Article

Performance of Precast Driven Piles in Marine Clay

Journal of Geotechnical Engineering 01/1991; 117(4). DOI: 10.1061/(ASCE)0733-9410(1991)117:4(637)
0 Bookmarks
 · 
28 Views
  • International Journal of Geomechanics. 01/2006; 6(2).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents finite element analyses of negative skin friction on a single pile under various conditions. Negative skin friction is a common problem if a pile is designed in a highly compressible soil. There are two most important parameters in estimating the load caused by negative skin friction: (1) the distribution and magnitude of skin friction and (2) the location of the neutral plane. The neutral plane is the location where the pile and soil settle the same amount or have no relative displacement. Negative skin friction is a very complex phenomenon influenced by many factors. In this paper, a two-dimensional axisymmetric model is built in the finite element program, ABAQUS. The model is first verified with a known case history. A systematic parametric analysis is performed to investigate the influence on both the neutral plane and the magnitude and distribution of negative skin friction along the pile length of various influencing factors, including the consolidation time, the properties of pile/soil interface, the lateral earth pressure coefficient, pile-soil limiting displacement, the intensity of surcharge, and soil stiffness. Based on the analyses, it is found that the location of the neutral plane is significantly influenced by the consolidation time and the stiffness of bearing layer. The distribution and magnitude of negative skin friction is influenced mainly by the pile/soil interface, soil compressibility, and the surcharge intensity. Based on the field measurements from literature and this investigation, a simple design procedure is proposed for estimating the pile load caused by negative skin friction.
    Acta Geotechnica 09/2012; 7(3). · 1.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A centrifuge model study is carried out to investigate the behavior of pile subject to negative skin friction induced by pile installation, ground water drawdown and surcharge loading. A single end-bearing pile is examined as the induced negative skin friction would induce the most severe stress on the pile structural material as compared to friction piles. In addition, the behavior of the pile under simultaneous negative skin friction and dead/live loads is examined. To facilitate detailed interpretations of the test results, the model setup is extensively instrumented and involves elaborate test control schemes. To further examine the phenomenon of negative skin friction on an end-bearing pile, finite element analyses were conducted. The numerical analysis is first validated against the centrifuge test data and subsequently extended to examine the effects of pile slenderness ratio, surcharge intensity and pile-soil stiffness ratio on the degree of mobilization of negative skin friction induced on the pile. Finally experimental and numerical studies are conducted to examine the effect of applied transient live load on pile subject to negative skin friction.
    Geomechanics and Engineering 01/2013; 5(3). · 0.35 Impact Factor