Evidence that Neuronal G-Protein-Gated Inwardly Rectifying K^+ Channels are Activated by Gbetagamma Subunits and Function as Heteromultimers

Division of Biology, California Institute of Technology, Pasadena 91225, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 07/1995; 92:6542-6546. DOI: 10.1073/pnas.92.14.6542
Source: PubMed

ABSTRACT Guanine nucleotide-binding proteins (G proteins) activate K^+ conductances in cardiac atrial cells to slow heart rate and in neurons to decrease excitability. cDNAs encoding three isoforms of a G-protein-coupled, inwardly rectifying K^+ channel (GIRK) have recently been cloned from cardiac (GIRK1/Kir 3.1) and brain cDNA libraries (GIRK2/Kir 3.2 and GIRK3/Kir 3.3). Here we report that GIRK2 but not GIRK3 can be activated by G protein subunits Gbeta_1 and Ggamma_2 in Xenopus oocytes. Furthermore, when either GIRK3 or GIRK2 was coexpressed with GIRK1 and activated either by muscarinic receptors or by Gbetagamma subunits, G-protein-mediated inward currents were increased by 5- to 40-fold. The single-channel conductance for GIRK1 plus GIRK2 coexpression was intermediate between those for GIRK1 alone and for GIRK2 alone, and voltage-jump kinetics for the coexpressed channels displayed new kinetic properties. On the other hand, coexpression of GIRK3 with GIRK2 suppressed the GIRK2 alone response. These studies suggest that formation of heteromultimers involving the several GIRKs is an important mechanism for generating diversity in expression level and function of neurotransmitter-coupled, inward rectifier K^+ channels.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GIRK channels control spike frequency in atrial pacemaker cells and inhibitory potentials in neurons. By directly responding to G proteins, PIP2 and Na(+), GIRK is under the control of multiple signaling pathways. In this study, the mammalian GIRK2 channel has been purified and reconstituted in planar lipid membranes and effects of Gα, Gβγ, PIP2 and Na(+) analyzed. Gβγ and PIP2 must be present simultaneously to activate GIRK2. Na(+) is not essential but modulates the effect of Gβγ and PIP2 over physiological concentrations. Gαi1(GTPγS) has no effect, whereas Gαi1(GDP) closes the channel through removal of Gβγ. In the presence of Gβγ, GIRK2 opens as a function of PIP2 mole fraction with Hill coefficient 2.5 and an affinity that poises GIRK2 to respond to natural variations of PIP2 concentration. The dual requirement for Gβγ and PIP2 can help to explain why GIRK2 is activated by Gi/o, but not Gq coupled GPCRs.
    eLife Sciences 07/2014; · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A variety of extracellular stimuli regulate cellular responses via membrane receptors. A well-known group of seven-transmembrane domain-containing proteins referred to as G protein-coupled receptors, directly couple with the intracellular GTP-binding proteins (G proteins) across cell membranes and trigger various cellular responses by regulating the activity of several enzymes as well as ion channels. Many specific populations of ion channels are directly controlled by G proteins; however, indirect modulation of some channels by G protein-dependent phosphorylation events and lipid metabolism is also observed. G protein-mediated diverse modifications affect the ion channel activities and spatio-temporally regulate membrane potentials as well as of intracellular Ca(2+) concentrations in both excitatory and non-excitatory cells.
    Biochimica et Biophysica Acta 09/2013; · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: abstract This study reports the identification of an endogenous,inhibitor of the G protein‐gated (K ACh

Full-text (2 Sources)

Available from
Jun 3, 2014