Article

Protein Kinase Cα Modulates Estrogen-Receptor-Dependent Transcription and Proliferation in Endometrial Cancer Cells

Department of Obstetrics and Gynecology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
Obstetrics and Gynecology International 06/2013; 2013:537479. DOI: 10.1155/2013/537479
Source: PubMed

ABSTRACT Endometrial cancer is the most common invasive gynecologic malignancy in developed countries. The most prevalent endometrioid tumors are linked to excessive estrogen exposure and hyperplasia. However, molecular mechanisms and signaling pathways underlying their etiology and pathophysiology remain poorly understood. We have shown that protein kinase Cα
(PKCα) is aberrantly expressed in endometrioid tumors and is an important mediator of endometrial cancer cell survival, proliferation, and invasion. In this study, we demonstrate that expression of active, myristoylated PKCα conferred ligand-independent activation of estrogen-receptor- (ER-) dependent promoters and enhanced responses to estrogen. Conversely, knockdown of PKCα reduced ER-dependent gene expression and inhibited estrogen-induced proliferation of endometrial cancer cells. The ability of PKCα to potentiate estrogen activation of ER-dependent transcription was attenuated by inhibitors of phosphoinositide 3-kinase (PI3K) and Akt. Evidence suggests that PKCα and estrogen signal transduction pathways functionally interact, to modulate ER-dependent growth and transcription. Thus, PKCα signaling, via PI3K/Akt, may be a critical element of the hyperestrogenic environment and activation of ER that is thought to underlie the development of estrogen-dependent endometrial hyperplasia and malignancy. PKCα-dependent pathways may provide much needed prognostic markers of aggressive disease and novel therapeutic targets in ER positive tumors.

Full-text

Available from: Andrew P Bradford, Aug 15, 2014
0 Followers
 · 
54 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endometrial carcinoma (EC) is the most commonly diagnosed gynecologic malignancy in the western world. The majority of these cancers are curable, but a subset about 15-20% of endometrial tumors exhibits an aggressive phenotype. Based on clinic-pathological and molecular characteristics, EC has been classified into two groups: Type I estrogen-dependent adenocarcinomas, which have a good prognosis and an endometrioid histology, and Type II or non-estrogen-dependent EC associated with poor prognosis and non-endometrioid histology. EC develops as a result of a stepwise accumulation of alterations that seem to be specific of each histological type. However, more knowledge is needed to better understand the differences in the biology and the clinical outcome of EC. We would like to highlight the need to explore new potential biomarkers of EC as a tool for the detection and monitoring of aggressive endometrial tumors that, at the same time, will allow us to develop novel and more selective molecular targeted therapies against EC.
    Molecular and Cellular Endocrinology 10/2011; 358(2):244-55. DOI:10.1016/j.mce.2011.10.003 · 4.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To examine estrogen-induced growth mechanisms of endometrial carcinoma, we investigated the estrogen-induced activation of the mitogen-activated protein kinase (MAPK) pathway and cell cycle regulators. Estradiol (E(2)) treatment at concentrations of 10(-8) M and 10(-6) M to estrogen receptor (ER)-positive endometrial carcinoma Ishikawa cells for 24 h resulted in increased cell proliferation by 20% and 28% respectively. The E(2)-induced proliferation was associated with the activation of extracellular signal-regulated kinase (MAPK)3/1 and up-regulation of cyclin D1 and E, which were suppressed by the addition of an MAP2K inhibitor (U0126) or an ER antagonist (ICI 182 780). Then, our screening for estrogen-inducible growth factors identified that IGF1 was up-regulated remarkably by E(2). Immunoprecipitation using conditioned medium of Ishikawa cells after E(2) treatment confirmed the E(2)-induced secretion of IGF1 protein. Treatment with recombinant IGF1 stimulated cell proliferation in a dose-dependent fashion, in association with MAPK3/1 phosphorylation and up-regulation of cyclin D1 and E. These IGF1-induced responses were suppressed by treatment with MAP2K inhibitor or anti-IGF1 receptor antibody. Immunohistochemical staining confirmed the expression of activated MAPK3/1 in normal proliferative phase endometria and endometrial carcinomas, indicating the involvement of this pathway in actively proliferating endometrial tissues in vivo. These findings suggest that E(2)-induced proliferation of endometrial carcinoma cells is mediated by the MAPK3/1 pathway via autocrine stimulation of IGF1.
    Endocrine Related Cancer 11/2008; 16(1):113-22. DOI:10.1677/ERC-08-0117 · 4.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, we identified WISP-2 (Wnt-1 inducible signaling pathway protein 2) as a novel estrogen-inducible gene in the MCF-7 human breast cancer cell line. In this study, we examined whether WISP-2 expression is modulated by PK activators. Treatment with protein kinase A (PKA) activators [cholera toxin plus 3-isobutyl-1-methylxanthine (CT/IBMX)] induced WISP-2 expression. CT/IBMX induced expression of the other estrogen-responsive gene, pS2, more dramatically than maximum stimulation by 17beta-estradiol (E2). Treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), which directly stimulates protein kinase C (PKC) activity, completely prevented WISP-2 mRNA induction by E2, whereas it increased pS2 mRNA expression more dramatically than maximum stimulation by E2. Results of treatments with the protein synthesis inhibitor cycloheximide and the pure antiestrogen ICI182,780 suggest that these PK pathways modulate WISP-2 gene expression via different molecular mechanisms than those for pS2. Because TPA inhibits cell proliferation, we investigated whether WISP-2 induction was dependent on cell growth. Cells were treated with insulin-like growth factor-1 (IGF-1) or interleukin-1alpha (IL-1alpha) to stimulate or inhibit cell growth, respectively. These treatments had no effect on WISP-2 mRNA expression either alone or in combination with E2, suggesting that WISP-2 induction is independent of cell growth.
    Biochemical and Biophysical Research Communications 10/2003; 309(2):272-8. DOI:10.1016/j.bbrc.2003.07.001 · 2.28 Impact Factor