B-Lymphocytes from a Population of Children with Autism Spectrum Disorder and Their Unaffected Siblings Exhibit Hypersensitivity to Thimerosal

Department of Neurosurgery, The Methodist Neurological Institute, 6560 Fannin Street, Scurlock Tower No. 944, Houston, TX 77030, USA.
Journal of Toxicology 06/2013; 2013(5):801517. DOI: 10.1155/2013/801517
Source: PubMed


The role of thimerosal containing vaccines in the development of autism spectrum disorder (ASD) has been an area of intense debate, as has the presence of mercury dental amalgams and fish ingestion by pregnant mothers. We studied the effects of thimerosal on cell proliferation and mitochondrial function from B-lymphocytes taken from individuals with autism, their nonautistic twins, and their nontwin siblings. Eleven families were examined and compared to matched controls. B-cells were grown with increasing levels of thimerosal, and various assays (LDH, XTT, DCFH, etc.) were performed to examine the effects on cellular proliferation and mitochondrial function. A subpopulation of eight individuals (4 ASD, 2 twins, and 2 siblings) from four of the families showed thimerosal hypersensitivity, whereas none of the control individuals displayed this response. The thimerosal concentration required to inhibit cell proliferation in these individuals was only 40% of controls. Cells hypersensitive to thimerosal also had higher levels of oxidative stress markers, protein carbonyls, and oxidant generation. This suggests certain individuals with a mild mitochondrial defect may be highly susceptible to mitochondrial specific toxins like the vaccine preservative thimerosal.

Download full-text


Available from: Martyn Alun Sharpe, Feb 12, 2014
1 Follower
81 Reads
  • Source
    • "In individuals with inherent genetic differential sensitivities to hormone disruptors, early environmental exposure may play an important role in either the etiology of the disorder, or in the development of a number of cellular and metabolic deficits associated with it. Recent publications from our lab and others have implicated thimerosal in similar metabolic pathways examined in this paper [73, 74]. The possibility of thimerosal and/or other neurotoxins interacting with the hormones and hormone disruptors presented here to yield the ASD phenotype is an area which we are currently investigating. "
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been postulated that androgen overexposure in a susceptible person leads to excessive brain masculinization and the autism spectrum disorder (ASD) phenotype. In this study, the responses to estradiol (E2), dihydrotestosterone (DHT), and dichlorodiphenyldichloroethylene (DDE) on B-lymphocytes from ASD subjects and controls are compared. B cells were obtained from 11 ASD subjects, their unaffected fraternal twins, and nontwin siblings. Controls were obtained from a different cell bank. Lactate dehydrogenase (LDH) and sodium 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction levels were measured after incubation with different concentrations of E2, DHT, and DDE. XTT/LDH ratio, representative of mitochondria number per cell, was calculated. E2, DHT, and DDE all cause "U"-shaped growth curves, as measured by LDH levels. ASD B cells show less growth depression compared to siblings and controls (P < 0.01). They also have reduced XTT/LDH ratios (P < 0.01) when compared to external controls, whereas siblings had values of XTT/LDH between ASD and external controls. B-lymphocytes from people with ASD exhibit a differential response to E2, DHT, and hormone disruptors in regard to cell growth and mitochondrial upregulation when compared to non-ASD siblings and external controls. Specifically, ASD B-lymphocytes show significantly less growth depression and less mitochondrial upregulation when exposed to these effectors. A mitochondrial deficit in ASD individuals is implied.
    Journal of Toxicology 11/2013; 2013(11):159810. DOI:10.1155/2013/159810
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism spectrum disorder (ASD) is a neurological disorder in which a significant number of the children experience a developmental regression characterized by a loss of previously acquired skills and abilities. Typically reported are losses of verbal, nonverbal, and social abilities. Several recent studies suggest that children diagnosed with an ASD have abnormal sulfation chemistry, limited thiol availability, and decreased glutathione (GSH) reserve capacity, resulting in a compromised oxidation/reduction (redox) and detoxification capacity. Research indicates that the availability of thiols, particularly GSH, can influence the effects of thimerosal (TM) and other mercury (Hg) compounds. TM is an organomercurial compound (49.55% Hg by weight) that has been, and continues to be, used as a preservative in many childhood vaccines, particularly in developing countries. Thiol-modulating mechanisms affecting the cytotoxicity of TM have been identified. Importantly, the emergence of ASD symptoms post-6 months of age temporally follows the administration of many childhood vaccines. The purpose of the present critical review is provide mechanistic insight regarding how limited thiol availability, abnormal sulfation chemistry, and decreased GSH reserve capacity in children with an ASD could make them more susceptible to the toxic effects of TM routinely administered as part of mandated childhood immunization schedules.
    International Journal of Environmental Research and Public Health 08/2013; 10(8):3771-800. DOI:10.3390/ijerph10083771 · 2.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autism spectrum disorder (ASD) is a heterogeneous clinical condition whose prevalence has grown considerably during the last decade. Genetic factors are thought to underpin the disorder, but common genetic variants and epigenetic mechanisms have been increasingly called into question for the majority of ASD cases. Growing prenatal exposure to new environmental toxicants has been shown to potentially affect brain development, leading to altered cognitive, social, attentive, behavioral, and motor performance. Both epidemiological evidence and mechanistic studies assessing oxidative stress, neuroinflammation, epigenetic alterations, and impaired signal transduction, all observed following neurotoxicant exposure, indeed lend biological plausibility to Gene x Environment interactions, whereby environmental toxicants interacting additively or synergistically with genetic liability, can push prenatal neurodevelopmental processes over the threshold for postnatal ASD expression. Research on environmental contributions to ASD and on specific Gene x Environment interaction models ultimately aims at defining targeted preventive strategies.
    03/2014; 1(1). DOI:10.1007/s40474-013-0002-2
Show more