Article

Persistence of Th1/Tc1 responses one year after tetravalent dengue vaccination in adults and adolescents in Singapore.

Research & Development
Human vaccines & immunotherapeutics 07/2013; 9(11). DOI: 10.4161/hv.25562
Source: PubMed

ABSTRACT To characterize the cell mediated immunity (CMI) induced by the investigational CYD tetravalent dengue vaccine (TDV), we developed a whole-blood, intracellular cytokine staining (ICS) assay and a multiplex assay, each requiring 3 mL of blood. We assessed CMI before and 28 d after a first and third injection of CYD-TDV and one year after the third injection in a subset of 80 adolescents and adults enrolled in a phase II trial in Singapore (ClinicalTrial.gov NCT NCT00880893). CD4/IFNγ/TNFα responses specific to dengue NS3 were detected before vaccination. Vaccination induced YF-17D-NS3-specific CD8/IFNγ responses, without significant TNFα, and a CYD-specific Th1/Tc1 cellular response in all participants, which was characterized by predominant IFNγ secretion compared with TNFα, associated with low level IL-13 secretion in multiplex analysis of peripheral blood mononuclear cells (PBMC) supernatants after restimulation with each the CYD vaccine viruses. Responses were directed mainly against CYD-4 after the first vaccination, and were more balanced against all four serotypes after the third vaccination. The same qualitative profile was observed one year after the third vaccination, with approximately 2-fold lower NS3-specific responses, and 3-fold lower serotype-specific cellular responses. These findings confirm previous observations regarding both the nature and specificity of cellular responses induced by CYD-TDV, and for the first time demonstrate the persistence of cellular responses after one year. We also established the feasibility of analyzing CMI with small blood samples, allowing such analysis to be considered for pediatric trials.

0 Bookmarks
 · 
51 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dengue viruses (DENV) cause significantly more human disease than any other arbovirus, with hundreds of thousands of cases leading to severe disease in thousands annually. Antibodies and T cells induced by primary infection with DENV have the potential for both positive (protective) and negative (pathological) effects during subsequent DENV infections. In this review, we summarize studies that have examined T-cell responses in humans following natural infection and vaccination. We discuss studies that support a role for T cells in protection against and those that support a role for the involvement of T cells in the pathogenesis of severe disease. The mechanisms that lead to severe disease are complex, and T-cell responses are an important component that needs to be further evaluated for the development of safe and efficacious DENV vaccines.
    Future Microbiology 03/2014; 9:411-25. · 4.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dengue viruses (DENV) are mosquito-borne viruses that cause significant morbidity. The existence of four serotypes of DENV with partial immunologic cross-reactivity creates the opportunity for individuals to experience multiple acute DENV infections over the course of their lifetimes. Research over the past several years has revealed complex interactions between DENV and the human innate and adaptive immune systems that can have either beneficial or detrimental influences on the outcome of infection. Further studies that seek to distinguish protective from pathological immune responses in the context of natural DENV infection as well as clinical trials of candidate DENV vaccines have an important place in efforts to control the global impact of this re-emerging viral disease.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intracellular cytokine staining (ICS) assay is increasingly used in vaccine clinical trials to measure antigen-specific T-cell mediated immune (CMI) responses in cryopreserved peripheral blood mononuclear cells (PBMCs) and whole blood. However, recent observations indicate that several parameters involved in blood processing can impact PBMC viability and CMI responses, especially in antiretroviral therapy (ART)-naïve HIV-1-infected individuals. In this phase I study (NCT01610427), we collected blood samples from 22 ART-naïve HIV-1-infected adults. PBMCs were isolated and processed for ICS assay. The individual and combined effects of the following parameters were investigated: time between blood collection and PBMC processing (time-to-process: 2, 7 or 24hours); time between PBMC thawing and initiation of in vitro stimulation with HIV-1 antigens (resting-time: 0, 2, 6 and 18hours); and duration of antigen-stimulation in PBMC cultures (stimulation-time: 6hours or overnight). The cell recovery after thawing, cell viability after ICS and magnitude of HIV-specific CD8(+) T-cell responses were considered to determine the optimal combination of process conditions. The impact of time-to-process (2 or 4hours) on HIV-specific CD8(+) T-cell responses was also assessed in a whole blood ICS assay. A higher quality of cells in terms of recovery and viability (up to 81% and >80% respectively) was obtained with shorter time-to-process (less than 7hours) and resting-time (less than 2hours) intervals. Longer (overnight) rather than shorter (6hours) stimulation-time intervals increased the frequency of CD8(+)-specific T-cell responses using ICS in PBMCs without change of the functionality. The CD8(+) specific T-cell responses detected using fresh whole blood showed a good correlation with the responses detected using frozen PBMCs. Our results support the need of standardized procedures for the evaluation of CMI responses, especially in HIV-1-infected, ART-naïve patients.
    Journal of Immunological Methods 09/2014; · 2.01 Impact Factor