Article

Antagonistic Effects of Anti-EMMPRIN Antibody When Combined with Chemotherapy Against Hypovascular Pancreatic Cancers.

Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, 35294-0019, USA, .
Molecular imaging and biology: MIB: the official publication of the Academy of Molecular Imaging (Impact Factor: 2.87). 07/2013; 16(1). DOI: 10.1007/s11307-013-0665-4
Source: PubMed

ABSTRACT To examine the antagonistic effects of anti-extracellular matrix metalloprotease inducer (anti-EMMPRIN) antibody when combined with chemotherapy using a hypovascular pancreatic tumor model.
Severely compromised immunodeficient mice bearing orthotopic MIA PaCa-2 tumors were used (five to six animals per group). Dynamic contrast-enhanced magnetic resonance imaging was used to examine the relationship between tumor vascularity and size. Therapy was initiated when tumors were hypovascular. Treatments included: (1) gemcitabine alone, (2) anti-EMMPRIN antibody alone, and (3) combination, each for 2 weeks. Additionally, another treatment arm included β-lapachone, an NAD(P)H/quinone 1 (NQO1) bioactivated agent. (18)F-fluoro-D-glucose-positron emission tomography/computed tomography imaging was used weekly to monitor therapeutic effects.
Gemcitabine or anti-EMMPRIN monotherapy significantly delayed tumor growth, but the combination therapy showed an antagonistic effect. Similarly, tumor growth was significantly suppressed by β-lapachone alone, and additive effects were noted when combined with gemcitabine, but the therapeutic efficacy was reduced when anti-EMMPRIN antibody was added.
Anti-EMMPRIN antibody with chemotherapy in hypovascular tumors results in antagonistic effects.

0 Followers
 · 
51 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lung cancer is one of the most lethal forms of cancer and current chemotherapeutic strategies lack broad specificity and efficacy. Recently, β-lapachone (β-lap) was shown to be highly efficacious in killing non-small cell lung cancer (NSCLC) cells regardless of their p53, cell cycle and caspase status. Pre-clinical and clinical use of β-lap (clinical form, ARQ501 or 761) is hampered by poor pharmacokinetics and toxicity due to hemolytic anemia. Here, we report the development and preclinical evaluation of β-lap prodrug nanotherapeutics consisting of diester derivatives of β-lap encapsulated in biocompatible and biodegradable poly(ethylene glycol)-b-poly(d,l-lactic acid) (PEG-b-PLA) micelles. Compared to the parent drug, diester derivatives of β-lap showed higher drug loading densities inside PEG-b-PLA micelles. After esterase treatment, micelle-delivered β-lap-dC3 and -dC6 prodrugs were converted to β-lap. Cytotoxicity assays using A549 and H596 lung cancer cells showed that both micelle formulations maintained NAD(P)H:quinone oxidoreductase 1 (NQO1)-dependent cytotoxicity. However, antitumor efficacy study of β-lap-dC3 micelles against orthotopic A549 NSCLC xenograft-bearing mice showed significantly greater long-term survival over β-lap-dC6 micelles or β-lap-HPβCD complexes. Improved therapeutic efficacy of β-lap-dC3 micelles correlated with higher area under the concentration-time curves of β-lap in tumors, and enhanced pharmacodynamic endpoints (e.g., PARP1 hyperactivation, γH2AX, and ATP depletion). β-Lap-dC3 prodrug micelles provide a promising strategy for NQO1-targeted therapy of lung cancer with improved safety and antitumor efficacy. Copyright © 2014. Published by Elsevier B.V.
    Journal of Controlled Release 12/2014; 200. DOI:10.1016/j.jconrel.2014.12.027 · 7.26 Impact Factor