Article

Gingras AC, Kennedy SG, O'Leary MA et al.4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev 12:502-513

Department of Biochemistry, McGill University Montreal, Quebec, Canada H3G 1Y6.
Genes & Development (Impact Factor: 12.64). 02/1998; 12(4):502-513. DOI: 10.1101/gad.12.4.502

ABSTRACT Growth factors and hormones activate protein translation by phosphorylation and inactivation of the translational repressors, the eIF4E-binding proteins (4E-BPs), through a wortmannin- and rapamycin-sensitive signaling pathway. The mechanism by which signals emanating from extracellular signals lead to phosphorylation of 4E-BPs is not well understood. Here we demonstrate that the activity of the serine/threonine kinase Akt/PKB is required in a signaling cascade that leads to phosphorylation and inactivation of 4E-BP1. PI 3-kinase elicits the phosphorylation of 4E-BP1 in a wortmannin- and rapamycin-sensitive manner, whereas activated Akt-mediated phosphorylation of 4E-BP1 is wortmannin resistant but rapamycin sensitive. A dominant negative mutant of Akt blocks insulin-mediated phosphorylation of 4E-BP1, indicating that Akt is required for the in vivo phosphorylation of 4E-BP1. Importantly, an activated Akt induces phosphorylation of 4E-BP1 on the same sites that are phosphorylated upon serum stimulation. Similar to what has been observed with serum and growth factors, phosphorylation of 4E-BP1 by Akt inhibits the interaction between 4E-BP1 and eIF-4E. Furthermore, phosphorylation of 4E-BP1 by Akt requires the activity of FRAP/mTOR. FRAP/mTOR may lie downstream of Akt in this signaling cascade. These results demonstrate that the PI 3-kinase-Akt signaling pathway, in concert with FRAP/mTOR, induces the phosphorylation of 4E-BP1.

0 Followers
 · 
116 Views
 · 
5 Downloads
  • Source
    • "AKT induces protein synthesis and cell proliferation by causing abrogation of TSC1/2, which leads to activation of the mTORC1 complex [101] [102]. Both PI3K and AKT participate in activation of mTOR [103] [104], and the full activation of AKT requires phosphorylation of another of its kinase domains via mTOR complex 2 (mTORC2) [105]. These two distinct complexes of mTOR, mTORC1 and mTORC2, are believed to have differing functions, but their regulation overlaps in important ways. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Melanoma is the least common form of skin cancer, but it is responsible for the majority of skin cancer deaths. Traditional therapeutics and immunomodulatory agents have not shown much efficacy against metastatic melanoma. Agents that target the RAS/RAF/MEK/ERK (MAPK) signaling pathway-the BRAF inhibitors vemurafenib and dabrafenib, and the MEK1/2 inhibitor trametinib-have increased survival in patients with metastatic melanoma. Further, the combination of dabrafenib and trametinib has been shown to be superior to single agent therapy for the treatment of metastatic melanoma. However, resistance to these agents develops rapidly. Studies of additional agents and combinations targeting the MAPK, PI3K/AKT/mTOR (PI3K), c-kit, and other signaling pathways are currently underway. Furthermore, studies of phytochemicals have yielded promising results against proliferation, survival, invasion, and metastasis by targeting signaling pathways with established roles in melanomagenesis. The relatively low toxicities of phytochemicals make their adjuvant use an attractive treatment option. The need for improved efficacy of current melanoma treatments calls for further investigation of each of these strategies. In this review, we will discuss synthetic small molecule inhibitors, combined therapies and current progress in the development of phytochemical therapies. Copyright © 2015. Published by Elsevier Ireland Ltd.
    Cancer Letters 01/2015; 359(1). DOI:10.1016/j.canlet.2015.01.016 · 5.62 Impact Factor
  • Source
    • "4E-BP1 by upstream kinase mTOR liberates eIF4E for the interaction with a scaffold protein eIF4G [14]. Among mTOR complexes i.e. mTORC1 and mTORC2 [15], mTORC1 has been found to be sensitive to rapamycin and regulates 4E-BP1. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pim oncogenes are highly expressed in many types of hematological and solid cancers. Pim kinases regulate the network of signaling pathways that are critical for tumorigenesis and development, making Pim kinases the attractive drug targets. Currently, two approaches have been employed in designing Pim kinase inhibitors: ATP-mimetics and non-ATP mimetics; but all target the ATP-binding pocket and are ATP-competitive. In this review, we summarize the current progress in understanding the Pim-related structure and biology, and provide insights into the binding modes of some prototypical Pim-1 inhibitors. The challenges as well as opportunities are highlighted for development of Pim kinase inhibitors as potential anticancer agents.
    Future medicinal chemistry 01/2015; 7(1):35-53. DOI:10.4155/fmc.14.145 · 4.00 Impact Factor
  • Source
    • "4E-BP1 by upstream kinase mTOR liberates eIF4E for the interaction with a scaffold protein eIF4G [14]. Among mTOR complexes i.e. mTORC1 and mTORC2 [15], mTORC1 has been found to be sensitive to rapamycin and regulates 4E-BP1. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The Ras/Raf/MAPK and PI3K/Akt/mTORC1 cascades are two most aberrantly regulated pathways in cancers. As MAPK-interacting kinases (Mnks) are part of the convergent node of these two pathways, and play a pivotal role in cellular transformation, targeting Mnks has emerged as a potential therapeutic strategy. Herein, a dual-specific Mnk1/2 inhibitor MNKI-57 and a potent Mnk2-specific inhibitor MNKI-4 were selected for a panel screen against 28 human cancer cell lines. The study reveals that MNKI-57 and MNKI-4 are most potent against leukemia cells KYO-1 (i.e. BC-CML) and KG-1 (i.e. AML). Interestingly, we found that sensitivity of selected leukemia cells to Mnk inhibitors is correlated with the level of phosphorylated 4E-BP1 at Thr70. The anti-proliferative effects of Mnk inhibitors are cytostatic in the sensitive KYO-1 cells, inducing significant G1 arrest via down-regulation of cyclin D1 expression. In KYO-1 cells where Akt is not constitutively active, Mnk inhibitors increase the sensitivity of cells to rapamycin, resulting in a more pronounced anti-proliferative activity. Remarkably, the synergistic anti-proliferative effects are associated with a marked de-phosphorylation of 4E-BP1 at Thr70. Collectively, these data highlight the importance of 4E-BP1 as a key integrator in the MAPK and mTORC1 cascades, and suggest that a combined pharmacologic inhibition of mTORC1 and Mnk kinases offers an innovative therapeutic opportunity in BC-CML.
    Cancer Letters 12/2014; DOI:10.1016/j.canlet.2014.12.029 · 5.62 Impact Factor
Show more

Preview

Download
5 Downloads
Available from