Effects of BDNF Val66Met polymorphism on brain metabolism in Alzheimer's disease

LIAMA Center for Computational Medicine, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
Neuroreport (Impact Factor: 1.52). 08/2010; 21(12):802-807. DOI: 10.1097/WNR.0b013e32833ccaf4
Source: PubMed


Earlier studies showed that the Val66Met polymorphisms of the brain-derived neurotrophic factor differentially affect gray matter volume and brain region activities. This study used resting positron emission tomography to investigate the relationship between the polymorphisms of Val66Met and the regional cerebral metabolic rate in the brain. We analyzed the positron emission tomography images of 215 patients from the Alzheimer's Disease Neuroimaging Initiative and found significant differences in the parahippocampal gyrus, superior temporal gyrus, prefrontal cortex, and inferior parietal lobule when comparing Met carriers with noncarriers among both the normal controls and those with mild cognitive impairment. For those with Alzheimer's disease, we also found additional differences in the bilateral insula between the carriers and noncarriers.


Available from: Tianzi Jiang
  • Source
    • "Xu et al. 2010, Neuroreport "
    [Show abstract] [Hide abstract]
    ABSTRACT: The Genetics Core of the Alzheimer’s Disease Neuroimaging Initiative (ADNI), formally established in 2009, aims to provide resources and facilitate research related to genetic predictors of multidimensional Alzheimer’s disease (AD)-related phenotypes. Here, we provide a systematic review of genetic studies published between 2009 and 2012 where either ADNI APOE genotype or genome-wide association study (GWAS) data were used. We review and synthesize ADNI genetic associations with disease status or quantitative disease endophenotypes including structural and functional neuroimaging, fluid biomarker assays, and cognitive performance. We also discuss the diverse analytical strategies used in these studies, including univariate and multivariate analysis, meta-analysis, pathway analysis, and interaction and network analysis. Finally, we perform pathway and network enrichment analyses of these ADNI genetic associations to highlight key mechanisms that may drive disease onset and trajectory. Major ADNI findings included all the top 10 AD genes and several of these (e.g., APOE, BIN1, CLU, CR1, and PICALM) were corroborated by ADNI imaging, fluid and cognitive phenotypes. ADNI imaging genetics studies discovered novel findings (e.g., FRMD6) that were later replicated on different data sets. Several other genes (e.g., APOC1, FTO, GRIN2B, MAGI2, and TOMM40) were associated with multiple ADNI phenotypes, warranting further investigation on other data sets. The broad availability and wide scope of ADNI genetic and phenotypic data has advanced our understanding of the genetic basis of AD and has nominated novel targets for future studies employing next-generation sequencing and convergent multi-omics approaches, and for clinical drug and biomarker development. Electronic supplementary material The online version of this article (doi:10.1007/s11682-013-9262-z) contains supplementary material, which is available to authorized users.
    Brain Imaging and Behavior 10/2013; 8(2). DOI:10.1007/s11682-013-9262-z · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Expression levels of BDNF and trkB, primary components of an important neurotrophin signaling pathway, have been reported to be abnormal in neurodegenerative dementias. Here, we used a novel postmortem brain tissue stimulation paradigm to examine BDNF-induced trkB signaling in participants of the Religious Orders Study, a large longitudinal clinicopathological study of aging and cognition. Thawed slices of anterior cingulate cortex were incubated in BDNF and changes in phosphorylated trkB and downstream signaling molecules ERK2 and Akt were measured, as well as the association of NMDA receptors with trkB. We found that stimulation with BDNF induced much greater activity of the BDNF-trkB signaling pathway in brain tissues of people with cognitive decline and AD, as evidenced by significantly more phosphorylation of trkB (pY-trkB), ERK2 (pY/pT-ERK2), Akt (pS-Akt), and greater BDNF-induced coupling of trKB with NMDAR2A/B. These findings were independent of PHFtau neurofibrillary tangle and amyloid-b plaque densities and other potentially confounding variables. Regression analyses with clinical features further characterized significant relationships between measures of BDNF-trkB activation and domains of cognition and emotional functioning. Increased BDNF-trkB signaling with cognitive decline could reflect a primary derangement of pathway functioning or a compensatory neuroplastic response to counteract neural injury associated with neurodegenerative processes. KeywordsBDNF–TrkB–ERK2–Akt–NMDAR2–Anterior cingulate–Aging–Cognitive decline–Alzheimer’s disease
    06/2011; 2(2):91-100. DOI:10.2478/s13380-011-0015-4
  • [Show abstract] [Hide abstract]
    ABSTRACT: To address the functional roles of genetic polymorphisms of brain-derived neurotrophic factor (BDNF) in Alzheimer's disease (AD) from a neuropsychological aspect, we used a cross-sectional study design to investigate the association between novel single nucleotide polymorphisms (SNPs) of the BDNF gene (Val66Met (G196A) and C270T) and the Frontal Assessment Battery (FAB) score, which reflects executive function as a non-memory cognitive impairment. One hundred and sixty-nine outpatients with AD or amnestic mild cognitive impairment (A-MCI) were recruited to the study and divided into three genotypic groups for each representative BDNF functional polymorphism as follows: (i) Val66Met (G196A): G/G (n = 45), G/A (n = 104), and A/A (n = 20); and (ii) C270T: C/C (n = 160), C/T (n = 9), and T/T (n = 0). Then, age, sex ratio, duration of illness (months), education years, Mini-Mental State Examination (MMSE) score, behavioral pathology in Alzheimer disease (Behave-AD) score, Clinical Dementia Rating (CDR) ratio, and total and subtest FAB scores were compared between the genotypic groups for each SNP. Significant differences were found in the total (P < 0.01) and subtest (conflicting instructions and prehension behavior; P < 0.01) FAB scores between the C270T polymorphism groups (C/C and C/T), but not among the G196A polymorphism groups. However, no significant differences in age, sex ratio, duration of illness (months), education years, Behave-AD score, CDR ratio, or MMSE score (reflecting attention and memory function) were found between the individual polymorphism genotypes (G196A and C270T). Of the known BDNF polymorphisms, the C270T SNP may influence executive dysfunction as a non-memory cognitive impairment in Japanese patients with AD.
    Psychogeriatrics 09/2011; 11(3):141-9. DOI:10.1111/j.1479-8301.2011.00364.x · 0.99 Impact Factor
Show more