NADPH Oxidase 2 Mediates Intermittent Hypoxia-Induced Mitochondrial Complex I Inhibition: Relevance to Blood Pressure Changes in Rats

Department of Medicine, Center for Systems Biology of O2 Sensing, University of Chicago, Chicago, Illinois 60637, USA.
Antioxidants & Redox Signaling (Impact Factor: 7.41). 01/2010; 14(4). DOI: 10.1089/ars.2010.3213


Previous studies identified NADPH oxidases (Nox) and mitochondrial electron transport chain at complex I as major cellular sources of reactive oxygen species (ROS) mediating systemic and cellular responses to intermittent hypoxia (IH). In the present study, we investigated potential interactions between Nox and the mitochondrial complex I and assessed the contribution of mitochondrial ROS in IH-evoked elevation in blood pressure. IH treatment led to stimulus-dependent activation of Nox and inhibition of complex I activity in rat pheochromocytoma (PC)12 cells. After re-oxygenation, Nox activity returned to baseline values within 3 h, whereas the complex I activity remained downregulated even after 24 h. IH-induced complex I inhibition was prevented by Nox inhibitors, Nox2 but not Nox 4 siRNA, in cell cultures and was absent in gp91(phox-/Y) (Nox2 knock-out; KO) mice. Using pharmacological inhibitors, we show that ROS generated by Nox activation mobilizes Ca(2+) flux from the cytosol to mitochondria, leading to S-glutathionylation of 75- and 50-kDa proteins of the complex I and inhibition of complex I activity, which results in elevated mitochondrial ROS. Systemic administration of mito-tempol prevented the sustained but not the acute elevations of blood pressure in IH-treated rats, suggesting that mitochondrial-derived ROS contribute to sustained elevation of blood pressure.

Download full-text


Available from: Ganesh K Kumar, Jun 23, 2014
  • Source
    • "growth. To determine the importance of NOX2 for dendritic growth, sympathetic neurons were transfected with siRNAs previously shown to inhibit either NOX2 or NOX4 in PC12 cells (Khan et al., 2011). Cultured sympathetic neurons transfected with NOX2 siRNA, followed by treatment with BMP-7 (50 ng/ml) showed reduced dendritic growth compared to BMP-7 treated neurons transfected with either control siRNA or no siRNA (Fig. 8A). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have shown that bone morphogenetic proteins (BMPs) promote dendritic growth in sympathetic neurons; however, the downstream signaling molecules that mediate the dendrite promoting activity of BMPs are not well characterized. Here we test the hypothesis that reactive oxygen species (ROS)-mediated signaling links BMP receptor activation to dendritic growth. In cultured rat sympathetic neurons, exposure to any of three mechanistically distinct antioxidants, diphenylene iodinium (DPI), nordihydroguiaretic acid (NGA) or desferroxamine (DFO), blocked de novo BMP-induced dendritic growth. Addition of DPI to cultures previously induced with BMP to extend dendrites caused dendritic retraction while DFO and NGA prevented further growth of dendrites. The inhibition of the dendrite promoting activity of BMPs by antioxidants was concentration-dependent and occurred without altering axonal growth or neuronal cell survival. Antioxidant treatment did not block BMP activation of SMAD 1,5 as determined by nuclear localization of these SMADs. While BMP treatment did not cause a detectable increase in intracellular ROS in cultured sympathetic neurons as assessed using fluorescent indicator dyes, BMP treatment increased the oxygen consumption rate in cultured sympathetic neurons as determined using the Seahorse XF24 Analyzer, suggesting increased mitochondrial activity. In addition, BMPs upregulated expression of NADPH oxidase 2 (NOX2) and either pharmacological inhibition or siRNA knockdown of NOX2 significantly decreased BMP-7 induced dendritic growth. Collectively, these data support the hypothesis that ROS are involved in the downstream signaling events that mediate BMP7-induced dendritic growth in sympathetic neurons, and suggest that ROS-mediated signaling positively modulates dendritic complexity in peripheral neurons. Copyright © 2015. Published by Elsevier Inc.
    Molecular and Cellular Neuroscience 06/2015; 67. DOI:10.1016/j.mcn.2015.06.007 · 3.84 Impact Factor
  • Source
    • "Thus, it is plausible to suggest that CIH-induced NOXdependent elevated ROS might impair muscle force-generating capacity without concomitant widespread oxidative stress/injury. CIH-induced oxidative damage has been observed in skeletal muscle (Dutta et al., 2008) and other tissues (Veasey et al., 2004; Raghuraman et al., 2009; Khan et al., 2011). It appears that the detrimental effects of CIH manifest in a " dose " -dependent manner and the effects of oxidative stress may be organ-specific (Shan et al., 2007; Jun et al., 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic intermittent hypoxia (CIH) causes upper airway muscle dysfunction. We hypothesized that the superoxide generating NADPH oxidase (NOX) is upregulated in CIH-exposed muscle causing oxidative stress. Adult male Wistar rats were exposed to intermittent hypoxia (5% O2 at the nadir for 90 s followed by 210 s of normoxia), for 8 hours per day for 14 days. The effect of CIH exposure on the expression of NOX subunits, total myosin and 4-hydroxynonenal (4-HNE) protein adducts in sternohyoid muscle was determined by western blotting and densitometry. Sternohyoid protein free thiol and carbonyl group contents were determined by 1D electrophoresis using specific fluorophore probes. Aconitase and glutathione reductase activities were measured as indices of oxidative stress. HIF-1a content and key oxidative and glycolytic enzyme activities were determined. Contractile properties of sternohyoid muscle were determined ex vivo in the absence and presence of apocynin (putative NOX inhibitor). We observed an increase in NOX 2 and p47 phox expression in CIH-exposed sternohyoid muscle with decreased aconitase and glutathione reductase activities. There was no evidence, however, of increased lipid peroxidation or protein oxidation in CIH-exposed muscle. CIH exposure did not affect sternohyoid HIF-1a content or aldolase, lactate dehydrogenase, or glyceraldehyde-3-phosphate dehydrogenase activities. Citrate synthase activity was also unaffected by CIH exposure. Apocynin significantly increased sternohyoid force and power. We conclude that CIH exposure upregulates NOX expression in rat sternohyoid muscle with concomitant modest oxidative stress but it does not result in a HIF-1a-dependent increase in glycolytic enzyme activity. Constitutive NOX activity decreases sternohyoid force and power. Our results implicate NOX-dependent reactive oxygen species in CIH-induced upper airway muscle dysfunction which likely relates to redox modulation of key regulatory proteins.
    Frontiers in Physiology 01/2015; 6:15. DOI:10.3389/fphys.2015.00015 · 3.53 Impact Factor
  • Source
    • "Mitochondrial and cytosol fractions were isolated from cells or adrenal medullary extracts by differential centrifugation as described [22]. Aconitase activity was measured in both the fractions using aconitase assay kit (Cayman chemical company; # 705502) as described. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Sleep-disordered breathing with recurrent apnea produces chronic intermittent hypoxia (IH). We previously reported that IH leads to down-regulation of HIF-2α protein via a calpain-dependent signaling pathway resulting in oxidative stress. In the present study, we delineated the signaling pathways associated with calpain-dependent HIF-2α degradation in cell cultures and rats subjected to chronic IH. Reactive oxygen species (ROS) scavengers prevented HIF-2α degradation by IH and ROS mimetic decreased HIF-2α protein levels in rat pheochromocytoma PC12 cell cultures, suggesting that ROS mediate IH-induced HIF-2α degradation. IH activated xanthine oxidase (XO) by increased proteolytic conversion of xanthine dehydrogenase to XO. ROS generated by XO activated calpains, which contributed to HIF-2α degradation by IH. Calpain-induced HIF-2α degradation involves C-terminus but not the N-terminus of the HIF-2α protein. Pharmacological blockade as well as genetic knock down of XO prevented IH induced calpain activation and HIF-2α degradation in PC12 cells. Systemic administration of allopurinol to rats prevented IH-induced hypertension, oxidative stress and XO activation in adrenal medulla. These results demonstrate that ROS generated by XO activation mediates IH-induced HIF-2α degradation via activation of calpains.
    PLoS ONE 10/2013; 8(10):e75838. DOI:10.1371/journal.pone.0075838 · 3.23 Impact Factor
Show more