Article

The Effects of l theanine on Alpha-Band Oscillatory Brain Activity During a VisuoSpatial Attention Task

Program in Cognitive Neuroscience and Schizophrenia, The Cognitive Neurophysiology Laboratory, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
Brain Topography (Impact Factor: 3.67). 01/2009; 22(1):44-51. DOI: 10.1007/s10548-008-0068-z
Source: PubMed

ABSTRACT Background/Objectives Ingestion of the non-proteinic amino acid l-theanine (γ-glutamylethylamide) has been shown to influence oscillatory brain activity in the alpha band (8–14 Hz) in humans
during resting electroencephalographic (EEG) recordings and also during cognitive task performance. We have previously shown
that ingestion of a 250-mg dose of l-theanine significantly reduced tonic (background) alpha power during a demanding intersensory (auditory-visual) attentional cueing task. Further, cue-related
phasic changes in alpha power, indexing the shorter-term anticipatory biasing of attention between modalities, were stronger on
l-theanine compared to placebo. This form of cue-contingent phasic alpha activity is also known to index attentional biasing
within visual space. Specifically, when a relevant location is pre-cued, anticipatory alpha power increases contralateral
to the location to be ignored. Here we investigate whether the effects of l-theanine on tonic and phasic alpha activity, found previously during intersensory attentional deployment, occur also during
a visuospatial task. Subjects/Methods 168-channel EEG data were recorded from thirteen neurologically normal individuals while engaged in a highly demanding visuo-spatial
attention task. Participants underwent testing on two separate days, ingesting either a 250-mg colorless and tasteless solution
of l-theanine mixed with water, or a water-based solution placebo on each day in counterbalanced order. We compared the alpha-band
activity when subjects ingested l-Theanine vs. Placebo. Results We found a significant reduction in tonic alpha for the l-theanine treatment compared to placebo, which was accompanied by a shift in scalp topography, indicative of treatment-related
changes in the neural generators of oscillatory alpha activity. However, l-theanine did not measurably affect cue-related anticipatory alpha effects. Conclusions This pattern of results implies that l-theanine plays a more general role in attentional processing, facilitating longer-lasting processes responsible for sustaining
attention across the timeframe of a difficult task, rather than affecting specific moment-to-moment phasic deployment processes.

0 Bookmarks
 · 
28 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: When attention is directed to one information stream over another, the brain can be configured in advance to selectively process the relevant stream and suppress potentially distracting inputs. One key mechanism of suppression is through the deployment of anticipatory alpha-band (∼10 Hz) oscillatory activity, with greater alpha-band power observed in cortical regions that will ultimately process the distracting stream. Atypical attention has been implicated in autism spectrum disorder (ASD), including greater interference by distracting task-irrelevant inputs. Here we tested the integrity of these alpha-band mechanisms in ASD using an intersensory attention task. Electroencephalography (EEG) was recorded while participants were cued on a trial-by-trial basis to selectively deploy attention to the visual or auditory modality in anticipation of a target within the cued modality. Whereas typically developing (TD) children showed the predicted alpha-band modulation, with increased alpha-band power over parieto-occipital scalp when attention was deployed to the auditory compared with the visual modality, this differential pattern was entirely absent at the group level in the ASD cohort. Further, only the ASD group showed impaired performance due to the presence of task-irrelevant sensory information. These data suggest that impaired modulation of alpha-band activity plays a role in increased distraction from extraneous sensory inputs in ASD. Autism Res 2014, ●●: ●●-●●. © 2014 International Society for Autism Research, Wiley Periodicals, Inc.
    Autism Research 03/2014; · 3.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies show that patients with schizophrenia exhibit impaired responses to sensory stimuli, especially at the early stages of neural processing. In particular, patients' alpha-band (8-14 Hz) event-related desynchronization (ERD) and visual P1 event-related potential (ERP) component tend to be significantly reduced, with P1 ERP deficits greater for visual stimuli biased towards the magnocellular system. In healthy controls, studies show that pre-stimulus alpha (background alpha) plays a pivotal role in sensory processing and behavior, largely by shaping the neural responses to incoming stimuli. Here, we address whether patients' ERD and P1 deficits stem from impairments in pre-stimulus alpha mechanisms. To address this question we recorded electrophysiological activity in patients with schizophrenia and healthy controls while they engaged in a visual discrimination task with low, medium, and high contrast stimuli. The results revealed a significant decrease in patients' ERDs, which was largely driven by reductions in pre-stimulus alpha. These reductions were most prominent in right-hemispheric areas. We also observed a systematic relationship between pre-stimulus alpha and the P1 component across different contrast levels. However, this relationship was only observed in healthy controls. Taken together, these findings highlight a substantial anomaly in patients' amplitude-based alpha background activity over visual areas. The results provide further support that pre-stimulus alpha activity plays an active role in perception by modulating the neural responses to incoming sensory inputs, a mechanism that seems to be compromised in schizophrenia.
    PLoS ONE 01/2014; 9(3):e91720. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A systematic review and meta-analysis was conducted on 11 randomized placebo-controlled human studies of acute effects of tea constituents L-theanine and epigallocatechin gallate, administered alone or in combination with caffeine, on cognitive function and mood. The outcome measures of mood were alertness, calmness, and contentedness, derived from the Bond-Lader scales, and state anxiety, from the State-Trait Anxiety Inventory. Cognitive measures assessed were attentional switch, intersensory attention, and rapid visual information processing. Standardized mean differences between placebo and treatment groups are presented for each study and outcome measure. Meta-analysis using a random-effects model was conducted when data were available for three or more studies. Evidence of moderate effect sizes in favor of combined caffeine and L-theanine in the first 2 hours postdose were found for outcome measures Bond-Lader alertness, attentional switching accuracy, and, to a lesser extent, some unisensory and multisensory attentional outcomes. Moderator analysis of caffeine and L-theanine doses revealed trends toward greater change in effect size for caffeine dose than for L-theanine dose, particularly during the first hour postdose.
    Nutrition Reviews 06/2014; · 4.60 Impact Factor

Full-text

View
29 Downloads
Available from
May 27, 2014