Effects of Stress-Shielding on the Dynamic Viscoelasticity and Ordering of the Collagen Fibers in Rabbit Achilles Tendon

Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
Journal of Orthopaedic Research (Impact Factor: 2.99). 07/2013; 31(11). DOI: 10.1002/jor.22424
Source: PubMed


We investigated the effects of stress-shielding on both viscoelastic properties and microstructure of collagen fibers in the Achilles tendon by proton double-quantum filtered ((1) H-DQF) NMR spectroscopy. The right hind-limbs of 20 Japanese white rabbits were immobilized for 4 weeks in a cast with the ankle in plantarflexion. Dynamic viscoelasticity of the Achilles tendons was measured using a viscoelastic spectrometer. Proton DQF NMR signals were analyzed to determine the residual dipolar coupling of bound water molecules in the Achilles tendons. Both the dynamic storage modulus (E') and dynamic loss modulus (E″) decreased significantly in the Achilles tendons of the stress-shielding group. The results of the (1) H-DQF NMR examination demonstrated significantly reduced residual dipolar coupling in the Achilles tendons of this same group. The disorientation of collagen fibers by stress-shielding should contribute to degradation of the dynamic storage and loss moduli. The alterations of the collagen fiber orientation that contributed to the function of tendinous tissue can be evaluated by performing an analysis of (1) H DQF NMR spectroscopy. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.

Download full-text


Available from: Toshiharu Shirai, Oct 16, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Achilles tendon injuries affect both athletes and the general population, and their incidence is rising. In particular, the Achilles tendon is subject to dynamic loading at or near failure loads during activity, and fatigue induced damage is likely a contributing factor to ultimate tendon failure. Unfortunately, little is known about how injured Achilles tendons respond mechanically and structurally to fatigue loading during healing. Knowledge of these properties remains critical to best evaluate tendon damage induction and the ability of the tendon to maintain mechanical properties with repeated loading. Thus, this study investigated the mechanical and structural changes in healing mouse Achilles tendons during fatigue loading. Twenty four mice received bilateral full thickness, partial width excisional injuries to their Achilles tendons (IACUC approved) and twelve tendons from six uninjured mice were used as controls. Tendons were fatigue loaded to assess mechanical and structural properties simultaneously after 0, 1, 3, and 6 weeks of healing using an integrated polarized light system. Results showed that the number of cycles to failure decreased dramatically (37-fold, p<0.005) due to injury, but increased throughout healing, ultimately recovering after 6 weeks. The tangent stiffness, hysteresis, and dynamic modulus did not improve with healing (p<0.005). Linear regression analysis was used to determine relationships between mechanical and structural properties. Of tendon structural properties, the apparent birefringence was able to best predict dynamic modulus (R(2)=0.88-0.92) throughout healing and fatigue life. This study reinforces the concept that fatigue loading is a sensitive metric to assess tendon healing and demonstrates potential structural metrics to predict mechanical properties.
    Journal of Biomechanics 11/2013; 47(9). DOI:10.1016/j.jbiomech.2013.10.054 · 2.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review highlights recent research on Achilles tendon healing, and comments on the current clinical controversy surrounding the diagnosis and treatment of injury. The processes of Achilles tendon healing, as demonstrated through changes in its structure, composition, and biomechanics, are reviewed. Finally, a review of tendon developmental biology and mechano transductive pathways is completed to recognize recent efforts to augment injured Achilles tendons, and to suggest potential future strategies for therapeutic intervention and functional tissue engineering. Despite an abundance of clinical evidence suggesting that current treatments and rehabilitation strategies for Achilles tendon ruptures are equivocal, significant questions remain to fully elucidate the basic science mechanisms governing Achilles tendon injury, healing, treatment, and rehabilitation.
    Muscles 04/2014; 4(2):245-55.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The extracellular matrix (ECM) is a major component of the biomechanical environment with which cells interact, and it plays important roles in both normal development and disease progression. Mechanical and biochemical factors alter the biomechanical properties of tissues by driving cellular remodeling of the ECM. This review provides an overview of the structural, compositional, and mechanical properties of the ECM that instruct cell behaviors. Case studies are reviewed that highlight mechanotransduction in the context of two distinct tissues: tendons and the heart. Although these two tissues demonstrate differences in relative cell-ECM composition and mechanical environment, they share similar mechanisms underlying ECM dysfunction and cell mechanotransduction. Together, these topics provide a framework for a fundamental understanding of the ECM and how it may vary across normal and diseased tissues in response to mechanical and biochemical cues. Copyright © 2015. Published by Elsevier B.V.
    Biochimica et Biophysica Acta 04/2015; 1853(11). DOI:10.1016/j.bbamcr.2015.04.015 · 4.66 Impact Factor
Show more