The Discovery of PLK4 Inhibitors: (E)-3-((1H-Indazol-6-yl)methylene)indolin-2-ones as Novel Antiproliferative Agents

Journal of Medicinal Chemistry (Impact Factor: 5.48). 07/2013; 56(15). DOI: 10.1021/jm400380m
Source: PubMed

ABSTRACT The family of Polo-like Kinases is important in the regulation of mitotic progression; this work keys on one member, namely Polo-like Kinase 4 (PLK4). PLK4 has been identified as a candidate anti-cancer target which prompted a search for potent and selective inhibitors of PLK4. The body of the paper describes lead generation and optimization work which yielded nanomolar PLK4 inhibitors. Lead generation began with directed virtual screening, using a ligand based focused library and a PLK4 homology model. Validated hits were used as starting points for the design and discovery of PLK4 inhibitors of novel structure, namely (E)-3-((1H-indazol-6-yl)methylene)indolin-2-ones. Computational models, based on a published X-ray structure (PLK4 kinase domain), were used to understand and optimize the in vitro activity of the series; potent anti-proliferative activity was obtained. The kinase selectivity profile and cell cycle analysis of selected inhibitors are described. The results of a xenograft study with an optimized compound 50 (designated CFI-400437) support the potential of these novel PLK4 inhibitors for cancer therapy.

  • [Show abstract] [Hide abstract]
    ABSTRACT: TTK kinase was identified by in-house siRNA screen and pursued as a tractable, novel target for cancer treatment. A screening campaign and systematic optimization, supported by computer modeling led to an indazole core with key sulfamoylphenyl and acetamido moieties at positions 3 and 5, respectively, establishing a novel chemical class culminating in identification of 72 (CFI-400936). This potent inhibitor of TTK (IC50=3.6nM) demonstrated good activity in cell based assay and selectivity against a panel of human kinases. A co-complex TTK X-ray crystal structure and results of a xenograft study with TTK inhibitors from this class are described.
    Bioorganic & Medicinal Chemistry 06/2014; 22(17). DOI:10.1016/j.bmc.2014.06.027 · 2.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The identification of novel anticancer agents with high efficacy and low toxicity has always been an intriguing topic in medicinal chemistry. The unique structural features of spirooxindoles together with diverse biological activities have made them promising structures in new drug discovery. Among spirooxindoles, CFI-400945 holds its promise as the first potent PLK4 inhibitor, the fumarate of CFI-400945 has entered phase I clinical trials for the treatment of solid tumors. However, questions remain as to whether PLK4 is the only relevant therapeutic target for CFI-400945. To highlight this significant progress of CFI-400945 in last two years, this review centers on the identification from a focused kinase library, structural optimizations and strategies involved, structure-activity relationships, modes of action, target validation, chemical synthesis and, more importantly, the kinase selectivity between PLK4 and other targets. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
    European Journal of Medicinal Chemistry 03/2015; 95. DOI:10.1016/j.ejmech.2015.03.020 · 3.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A hybrid pharmacophore approach was adopted to design and synthesize new series of isatin-pyridine hybrids. All the newly prepared hybrids (5a-o, 8 and 11a-d) were in vitro evaluated for their anti-proliferative activity against three human cancer cell lines, namely HepG2 hepatocellular carcinoma, A549 lung cancer and MCF-7 breast cancer. Compound 8 emerged as the most active member against HepG2 cell line (IC50 = 2.5 ± 0.39 μM), with 2.7-fold increased activity than the reference drug, doxorubicin (IC50 = 6.9 ± 2.05 μM). Whilst, compound 11c was found to be the most potent counterpart against A549 and MCF-7 cell lines with IC50 values of 10.8 ± 1.15 and 6.3 ± 0.79, respectively. The weightiness of the utilization of non-cleavable linker, as the chalcone linker, and simplification of the first group, was explored via the SAR study. Furthermore, a QSAR model was built to explore the structural requirements controlling the cytotoxic activities. Notably, the predicted activities by the QSAR model were very close to those experimentally observed, hinting that this model could be safely applied for prediction of more efficacious hits comprising the same skeletal framework. Finally, a theoretical kinetic study was established to predict the ADME of the active hybrids. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
    European Journal of Medicinal Chemistry 12/2014; 90C:684-694. DOI:10.1016/j.ejmech.2014.12.010 · 3.43 Impact Factor