IFNγ signaling—Does it mean JAK–STAT?

Department of Pathology, NYU Cancer Institute, New York University Langone School of Medicine, New York, 10016, USA.
Cytokine & growth factor reviews (Impact Factor: 6.54). 10/2008; 19(5):383-394. DOI: 10.1016/j.cytogfr.2008.08.004

ABSTRACT The molecular pathways involved in the cellular response to interferon (IFN)γ have been the focus of much research effort due to their importance in host defense against infection and disease, as well as its potential as a therapeutic agent. The discovery of the JAK–STAT signaling pathway greatly enhanced our understanding of the mechanism of IFNγ-mediated gene transcription. However, in recent years it has become apparent that other pathways, including MAP kinase, PI3-K, CaMKII and NF-κB, either co-operate with or act in parallel to JAK–STAT signaling to regulate the many facets of IFNγ biology in a gene- and cell type-specific manner. The complex interactions between JAK/STAT and alternate pathways and the impact of these signaling networks on the biological responses to IFNγ are beginning to be understood. This review summarizes and appraises current advances in our understanding of these complex interactions, their specificity and proposed biological outcomes.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Majority of individuals with history of visceral leishmaniasis (VL) exhibit strong immunity to re-infection, however, the mechanism of resistance is poorly understood. It is unclear whether CD8+ T cells contribute to protection against Leishmania donovani infection through cytotoxic activity. The present study aims to evaluate immunological mechanism associated with resistance to the disease in healed VL (HVL) individuals and further, the contribution of CD8+ T cells in the protective immunity.Methods Peripheral blood mononuclear cells (PBMCs) from VL, HVL and naive groups were exposed in vitro to total soluble Leishmania antigen (TSLA) from L. donovani. The proliferation index was determined by ELISA based lymphoproliferative assay. Cytokines and granzyme B levels were measured by CBA. Activated T-cell populations were estimated using flow cytometry.ResultsWe observed significantly higher lymphoproliferation, cytokines and granzyme B levels in HVL group compared to naive or VL group. More strikingly, we found a strong association (rs¿=¿0.895, P¿<¿0.0001) between proliferation index (PI) and granzyme B level, with a significant proportion of activated CD8+ T cells in HVL group.Conclusions Leishmania immune group (HVL) exhibited durable and strong cellular immune response to TSLA in terms of lymphoproliferation as well as production of Th1 cytokines and granzyme B. Additionally, the elevated level of activated CD8+ T cells and stimulation of cytotoxic activity through granzyme B production, indicated a possible role of CD8+ T cells in resistance to L. donovani infection in the HVL group.
    BMC Infectious Diseases 12/2014; 14(1):653. DOI:10.1186/s12879-014-0653-6 · 2.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Cytokines are key players in the interactions of the immune and nervous systems. Recently, we showed that such interplay is mediated by type I interferons (IFNs), which elevate the excitability of neocortical pyramidal neurons. A line of indirect evidence suggested that modulation of multiple ion channels underlies the effect. However, which currents are principally involved and how the IFN signaling cascade is linked to the respective ion channels remains elusive.Methods We tested several single and combined ionic current modulations using an in silico model of a neocortical layer 5 neuron. Subsequently we investigated resulting predictions by whole-cell patch-clamp recordings in layer 5 neurons of ex vivo neocortical rat brain slices pharmacologically reproducing or prohibiting neuronal IFN effects.ResultsThe amount and type of modulation necessary to replicate IFN effects in silico suggested protein kinase C (PKC) activation as link between the type I IFN signaling and ion channel modulations. In line with this, PKC activation with 4ß-phorbol 12-myristate 13-acetate (4ß-PMA) or Bryostatin1 augmented the excitability of neocortical layer 5 neurons comparable to IFN-ß in our ex vivo recordings. In detail, both PKC activators attenuated the rheobase and increased the input-output gain as well as the input resistance, thereby augmenting the neuronal excitability. Similar to IFN-ß they also left the threshold of action potential generation unaffected. In further support of PKC mediating type I IFN effects, IFN-ß, 4ß-PMA and Bryostatin1 reduced the amplitude of post-train after-hyperpolarizations in a similar manner. In conjunction with this finding, IFN-ß reduced M-currents, which contribute to after-hyperpolarizations and are modulated by PKC. Finally, blocking PKC activation with GF109203X at the catalytic site or calphostin C at the regulatory site prevented the main excitatory effects of IFN-ß.Conclusion Multiple ion channel modulations underlie the neuromodulatory effect of type I IFNs. PKC activation is both sufficient and necessary for mediating the effect, and links the IFN signaling cascade to the intrinsic ion channels. Therefore, we regard PKC activation as unitary mechanism for the neuromodulatory potential of type I IFNs in neocortical neurons.
    Journal of Neuroinflammation 10/2014; 11(1):185. DOI:10.1186/s12974-014-0185-4 · 4.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Signal integration between IFNγ and TLRs in immune cells has been associated with the host defense against pathogens and injury, with a predominant role of STAT1. We hypothesize that STAT1-dependent transcriptional changes in vascular cells involved in cross-talk between IFNγ and TLR4, reflect pro-atherogenic responses in human atherosclerosis. Genome-wide investigation identified a set of STAT1-dependent genes that were synergistically affected by interactions between IFNγ and TLR4 in VSMCs. These included the chemokines Cxcl9, Ccl12, Ccl8, Ccrl2, Cxcl10 and Ccl5, adhesion molecules Cd40, Cd74, and antiviral and antibacterial genes Rsad2, Mx1, Oasl1, Gbp5, Nos2, Batf2 and Tnfrsf11a. Among the amplified genes was also Irf8, of which Ccl5 was subsequently identified as a new pro-inflammatory target in VSMCs and ECs. Promoter analysis predicted transcriptional cooperation between STAT1, IRF1, IRF8 and NFκB, with the novel role of IRF8 providing an additional layer to the overall complexity. The synergistic interactions between IFNγ and TLR4 also resulted in increased T-cell migration and impaired aortic contractility in a STAT1-dependent manner. Expression of the chemokines CXCL9 and CXCL10 correlated with STAT1 phosphorylation in vascular cells in plaques from human carotid arteries. Moreover, using data mining of human plaque transcriptomes, expression of a selection of these STAT1-dependent pro-atherogenic genes was found to be increased in coronary artery disease (CAD) and carotid atherosclerosis. Our study provides evidence to suggest that in ECs and VSMCs STAT1 orchestrates a platform for cross-talk between IFNγ and TLR4, and identifies a STAT1-dependent gene signature that reflects a pro-atherogenic state in human atherosclerosis.
    PLoS ONE 12/2014; 9(12):e113318. DOI:10.1371/journal.pone.0113318 · 3.53 Impact Factor