Functional analysis of combinations in astaxanthin biosynthesis genes from Paracoccus haeundaensis

Dong-Eui University (BK 21 program) Department of Biomaterial Control 614-714 Busan Korea
Biotechnology and Bioprocess Engineering (Impact Factor: 1.22). 06/2007; 12(3):312-317. DOI: 10.1007/BF02931110

ABSTRACT Carotenoids are important natural pigments produced by many microorganisms and plants. We have previously reported the isolation
of a new marine bacterium,Paracoccus haeundaensis, which produces carotenoids, mainly in the form of astaxanthin. The astaxanthin biosynthesis gene cluster, consisting of
six carotenogenic genes, was cloned and characterized from this organism. Individual genes of the carotenoid biosynthesis
gene cluster were functionally expressed inEscherichia coli and each gene product was purified to homogeneity. Their molecular characteristics, including enzymatic activities, were
previously reported. Here, we report cloning the genes for crtE, crtEB, crtEBI, crtEBIY, crtEBIYZ, and crtEBI-YZW of theP. haeundaensis carotenoid biosynthesis genes inE. coli and verifying the production of the corresponding pathway intermediates. The carotenoids that accumulated in the transformed
cells carrying these gene combinations were analyzed by chromatographic and spectroscopic methods.


Available from: Yong Bae Seo, Jul 21, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The carotenoids are a major class of organic pigments produced in plants and microbes. They fulfill many essential physiological and developmental processes in plants, and also have important roles in animal health and nutrition. As such they have been the focus of multidisciplinary research programs aiming to understand how they are synthesized in microbes and plants, and to clone genes encoding the corresponding enzymes and express them to modulate carotenoid production in recombinant microbial and plant systems. Our deeper understanding of carotenogenic gene regulation, in concert with the development of more effective multi-gene transfer systems for plants, has facilitated more ambitious strategies for the modulation of plant carotenoid biosynthesis not only in laboratory models but more importantly in staple food crops. Here we review the genetic and molecular tools and resources available for fundamental and applied carotenoid research, emphasizing recent achievements in carotenoid engineering and potential future objectives for carotenoid research in plants.
    Plant Science 03/2010; 179(1):28-48. DOI:10.1016/j.plantsci.2010.03.009 · 4.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recombinant Escherichia coli engineered to contain the whole mevalonate pathway and foreign genes for β-carotene biosynthesis, was utilized for production of β-carotene in bioreactor cultures. Optimum culture conditions were established in batch and pH-stat fed-batch cultures to determine the optimal feeding strategy thereby improving production yield. The specific growth rate and volumetric productivity in batch cultures at 37°C were 1.7-fold and 2-fold higher, respectively, than those at 28°C. Glycerol was superior to glucose as a carbon source. Maximum β-carotene production (titer of 663 mg/L and overall volumetric productivity of 24.6 mg/L × h) resulted from the simultaneous addition of 500 g/L glycerol and 50 g/L yeast extract in pH-stat fed-batch culture.
    Biotechnology and Bioprocess Engineering 10/2009; 14(5):559-564. DOI:10.1007/s12257-008-0230-1 · 1.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Carotenoids such as -carotene and astaxanthin are used as food colorants, animal feed supplements and for nutritional and cosmetic purposes. In a previous study, an astaxanthin biosynthesis gene cluster was isolated from the marine bacterium, Paracoccus haeundaensis. Geranylgeranyl pyrophosphate (GGPP) synthase (CrtE), encoded by the ortE gene, catalyzes the formation of GGPP from farnesyl pyrophosphate (FPP), which is an essential enzyme for the biosynthesis of carotenoids in early steps. In order to study the biochemical and enzymatic characteristics of this important enzyme, a large quantity of purified GGPP synthase is required. To overproduce GGPP synthase, the crtE gene was subcloned into a pET-44a(+) expression vector and transformed into the Escherichia coli BL21(DE3) codon plus cell. Transformants harboring the crtE gene were cultured and the crtE gene was over-expressed. The expressed protein was purified to homogeneity by affinity chromatography and applied to study its biochemical properties and molecular characteristics.
    03/2009; 12(1). DOI:10.5657/fas.2009.12.1.054