TIM3 is expressed on activated human CD4 + T cells and regulates Th1 and Th17 cytokines

Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
European Journal of Immunology (Impact Factor: 4.52). 09/2009; 39(9):2492-2501. DOI: 10.1002/eji.200939274
Source: PubMed

ABSTRACT TIM-3 is a molecule selectively expressed on a subset of murine IFN-gamma-secreting T helper 1 (Th1) cells but not Th2 cells, and regulates Th1 immunity and tolerance in vivo. At this time little is known about the role of TIM-3 on human T cells. To determine if TIM-3 similarly identifies and regulates Th1 cells in humans, we generated a panel of mAb specific for human TIM-3. We report that TIM-3 is expressed by a subset of activated CD4(+) cells, and that anti-CD3/anti-CD28 stimulation increases both the level of expression as well as the number of TIM-3(+) T cells. We also find that TIM-3 is expressed at high levels on in vitro polarized Th1 cells, and is expressed at lower levels on Th17 cells. In addition, human CD4(+) T cells secreted elevated levels of IFN-gamma, IL-17, IL-2, and IL-6, but not IL-10, IL-4, or TNF-alpha, when stimulated with anti-CD3/anti-CD28 in the presence of TIM-3-specific, putative antagonistic antibodies. This was not mediated by differences in proliferation or cell death, but rather by induction of cytokines at the transcriptional level. These results suggest that TIM-3 is a negative regulator of human T cells and regulates Th1 and Th17 cytokine secretion.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our interest in lactose as an immunomodulatory molecule results from studies showing that lactose binds to galectin-9, which has been shown to have various regulatory functions in the immune system including regulation of T-cell responses. Impaired regulation of T helper (Th)1 and Th17 type immune responses and dysfunction of regulatory T cells (Treg) have been implicated in many human immune-mediated diseases. In the present study, we investigated the effects of lactose on immune regulation using co-cultures of human peripheral blood mononuclear cell (PBMC)-derived Treg and effector T cells (Teff) obtained from twenty healthy adults. Treg, i.e. CD4+CD25+CD127-, were isolated from PBMC by immunomagnetic separation. The fraction of CD4+CD127- cells that was depleted of CD25+ cells was used as Teff. Treg and Teff at a ratio 1:5 were activated and the effects of lactose on the secretion of interferon-γ (IFN-γ) and IL-17 were analysed using ELISA for protein and quantitative RT-PCR for mRNA. Treg down-regulated the secretion of both IFN-γ (8·8-3·9 ng/ml, n 20, P= 0·003) and IL-17 (0·83-0·64 ng/ml, n 15, P= 0·04) in co-cultures, while in the presence of lactose the levels of secreted IFN-γ and IL-17 remained high and no down-regulation was observed (16·4 v. 3·99 ng/ml, n 20, P< 0·0001, and 0·74 v. 0·64 ng/ml, n 15, P= 0·005, respectively). We showed that lactose inhibits human Treg-mediated suppression of Th1 and Th17 immune responses in vitro.
    British Journal Of Nutrition 10/2014; DOI:10.1017/S0007114514001998 · 3.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: T-cell immunoglobulin domain and mucin domain-3 (TIM-3, also known as HAVCR2) is an activation-induced inhibitory molecule involved in tolerance and shown to induce T-cell exhaustion in chronic viral infection and cancers. Under some conditions, TIM-3 expression has also been shown to be stimulatory. Considering that TIM-3, like cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed death 1 (PD-1), is being targeted for cancer immunotherapy, it is important to identify the circumstances under which TIM-3 can inhibit and activate T-cell responses. Here we show that TIM-3 is co-expressed and forms a heterodimer with carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1), another well-known molecule expressed on activated T cells and involved in T-cell inhibition. Biochemical, biophysical and X-ray crystallography studies show that the membrane-distal immunoglobulin-variable (IgV)-like amino-terminal domain of each is crucial to these interactions. The presence of CEACAM1 endows TIM-3 with inhibitory function. CEACAM1 facilitates the maturation and cell surface expression of TIM-3 by forming a heterodimeric interaction in cis through the highly related membrane-distal N-terminal domains of each molecule. CEACAM1 and TIM-3 also bind in trans through their N-terminal domains. Both cis and trans interactions between CEACAM1 and TIM-3 determine the tolerance-inducing function of TIM-3. In a mouse adoptive transfer colitis model, CEACAM1-deficient T cells are hyper-inflammatory with reduced cell surface expression of TIM-3 and regulatory cytokines, and this is restored by T-cell-specific CEACAM1 expression. During chronic viral infection and in a tumour environment, CEACAM1 and TIM-3 mark exhausted T cells. Co-blockade of CEACAM1 and TIM-3 leads to enhancement of anti-tumour immune responses with improved elimination of tumours in mouse colorectal cancer models. Thus, CEACAM1 serves as a heterophilic ligand for TIM-3 that is required for its ability to mediate T-cell inhibition, and this interaction has a crucial role in regulating autoimmunity and anti-tumour immunity.
    Nature 10/2014; DOI:10.1038/nature13848 · 42.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The T cell Ig- and mucin domain-containing molecule-3 (Tim-3) negative immune checkpoint receptor demarcates functionally exhausted CD8(+) T cells arising from chronic stimulation in viral infections like HIV. Tim-3 blockade leads to improved antiviral CD8(+) T cell responses in vitro and, therefore, represents a novel intervention strategy to restore T cell function in vivo and protect from disease progression. However, the Tim-3 pathway in the physiologically relevant rhesus macaque SIV model of AIDS remains uncharacterized. We report that Tim-3(+)CD8(+) T cell frequencies are significantly increased in lymph nodes, but not in peripheral blood, in SIV-infected animals. Tim-3(+)PD-1(+)CD8(+) T cells are similarly increased during SIV infection and positively correlate with SIV plasma viremia. Tim-3 expression was found primarily on effector memory CD8(+) T cells in all tissues examined. Tim-3(+)CD8(+) T cells have lower Ki-67 content and minimal cytokine responses to SIV compared with Tim-3(-)CD8(+) T cells. During acute-phase SIV replication, Tim-3 expression peaked on SIV-specific CD8(+) T cells by 2 wk postinfection and then rapidly diminished, irrespective of mutational escape of cognate Ag, suggesting non-TCR-driven mechanisms for Tim-3 expression. Thus, rhesus Tim-3 in SIV infection partially mimics human Tim-3 in HIV infection and may serve as a novel model for targeted studies focused on rejuvenating HIV-specific CD8(+) T cell responses.

Full-text (2 Sources)

Available from
May 20, 2014