Tolstykh T, Lee J, Vafai S and Stock JBCarboxyl methylation regulates phosphoprotein phosphatase 2A by controlling the association of regulatory B subunits. EMBO J. 19: 5682-5691

Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
The EMBO Journal (Impact Factor: 10.43). 12/2000; 19(21). DOI: 10.1093/emboj/19.21.5682
Source: PubMed Central


Phosphoprotein phosphatase 2A (PP2A) is a major phosphoserine/threonine protein phosphatase in all eukaryotes. It has been isolated as a heterotrimeric holoenzyme composed of a 65 kDa A subunit, which serves as a scaffold for the association of the 36 kDa catalytic C subunit, and a variety of B subunits that control phosphatase specificity. The C subunit is reversibly methyl esterified by specific methyltransferase and methylesterase enzymes at a completely conserved C-terminal leucine residue. Here we show that methylation plays an essential role in promoting PP2A holoenzyme assembly and that demethylation has an opposing effect. Changes in methylation indirectly regulate PP2A phosphatase activity by controlling the binding of regulatory B subunits to AC dimers.

Download full-text


Available from: Jeffry B Stock, Sep 10, 2014
  • Source
    • "A significant proportion (∼30%) of PP2A consists as a scaffold (A) subunit complexed with the catalytic (C) subunit to form PP2AA/C heterodimers [2]. The PP2AA/C heterodimer subunits provide a platform for the binding of a third component, the regulatory B subunit, which facilitates “targeting” of the heterotrimeric holoenzyme towards target substrates [3]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The enzymatic activity of the type 2A protein phosphatase (PP2A) holoenzyme, a major serine/threonine phosphatase in the heart, is conferred by its catalytic subunit (PP2AC). PP2AC activity and subcellular localisation can be regulated by reversible carboxylmethylation of its C-terminal leucine309 (leu309) residue. Previous studies have shown that the stimulation of adenosine type 1 receptors (A1.Rs) induces PP2AC carboxylmethylation and altered subcellular distribution in adult rat ventricular myocytes (ARVM). In the current study, we show that the enzymatic components that regulate the carboxylmethylation status of PP2AC, leucine carboxylmethyltransferase-1 (LCMT-1) and phosphatase methylesterase-1 (PME-1) are abundantly expressed in, and almost entirely localised in the cytoplasm of ARVM. The stimulation of Gi-coupled A1.Rs with N(6)-cyclopentyladenosine (CPA), and of other Gi-coupled receptors such as muscarinic M2 receptors (stimulated with carbachol) and angiotensin II AT2 receptors (stimulated with CGP42112) in ARVM, induced PP2AC carboxylmethylation at leu309 in a concentration-dependent manner. Exposure of ARVM to 10 µM CPA increased the cellular association between PP2AC and its methyltransferase LCMT-1, but not its esterase PME-1. Stimulation of A1.Rs with 10 µM CPA increased the phosphorylation of protein kinase B at ser473, which was abolished by the PI3K inhibitor LY294002 (20 µM), thereby confirming that PI3K activity is upregulated in response to A1.R stimulation by CPA in ARVM. A1.R-induced PP2AC translocation to the particulate fraction was abrogated by adenoviral expression of the alpha subunit (Gαt1) coupled to the transducin G-protein coupled receptor. A similar inhibitory effect on A1.R-induced PP2AC translocation was also seen with LY294002 (20 µM). These data suggest that in ARVM, A1.R-induced PP2AC translocation to the particulate fraction occurs through a GiPCR-Gβγ-PI3K mediated intracellular signalling pathway, which may involve elevated PP2AC carboxylmethylation at leu309.
    PLoS ONE 01/2014; 9(1):e86234. DOI:10.1371/journal.pone.0086234 · 3.23 Impact Factor
  • Source
    • "PP2A holoenzyme assembly is highly regulated by methylation of the last leucine residue (Leu-309) in the conserved carboxylterminal peptide of PP2Ac (PP2Ac-tail, residues 294–309) [5], [6], [7]. Methylation is reversibly controlled by PP2A-specific leucine carboxyl methyltransferase 1 (LCMT-1) and PP2A methylesterase 1 (PME-1) [8], [9]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The function of the biologically essential protein phosphatase 2A (PP2A) relies on formation of diverse heterotrimeric holoenzymes, which involves stable association between PP2A scaffold (A) and catalytic (C or PP2Ac) subunits and binding of variable regulatory subunits. Holoenzyme assembly is highly regulated by carboxyl methylation of PP2Ac-tail; methylation of PP2Ac and association of the A and C subunits are coupled to activation of PP2Ac. Here we showed that PP2A-specific methyltransferase, LCMT-1, exhibits a higher activity toward the core enzyme (A-C heterodimer) than free PP2Ac, and the A-subunit facilitates PP2A methylation via three distinct mechanisms: 1) stabilization of a proper protein fold and an active conformation of PP2Ac; 2) limiting the space of PP2Ac-tail movement for enhanced entry into the LCMT-1 active site; and 3) weak electrostatic interactions between LCMT-1 and the N-terminal HEAT repeats of the A-subunit. Our results revealed a new function and novel mechanisms of the A-subunit in PP2A methylation, and coherent control of PP2A activity, methylation, and holoenzyme assembly.
    PLoS ONE 01/2014; 9(1):e86955. DOI:10.1371/journal.pone.0086955 · 3.23 Impact Factor
  • Source
    • "The activity of PP2A is also decreased via activating GSK-3β. Demethylation at Leu309 residue of PP2A catalytic subunit (PP2Ac) affects the activity of PP2A [20–22]. Thus, we detected the activity of PP2A and the expression of demethylated PP2Ac and total PP2Ac. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Aim. The aim of the present study was to investigate the effect of cornel iridoid glycoside (CIG) on tau hyperphosphorylation induced by wortmannin (WT) and GF-109203X (GFX) and the underlying mechanisms. Methods. Human neuroblastoma SK-N-SH cells were preincubated with CIG (50, 100, and 200 µg/ml, resp.) for 24 h and then exposed to 10 µM WT and 10 µM GFX for 3 h after washing out CIG. Immunohistochemistry was used to observe the microtubular cytoskeleton of the cultured cells. Western blotting was used to measure the phosphorylation level of tau protein, glycogen synthase kinase 3 β (GSK-3 β ), and protein phosphatase 2A (PP2A). The activity of PP2A was detected by a biochemical assay. Results. Preincubation of CIG significantly attenuated the WT/GFX-induced tau hyperphosphorylation at the sites of Thr205, Thr212, Ser214, Thr217, Ser396, and PHF-1 and improved the damage of morphology and microtubular cytoskeleton of the cells. CIG did not prevent the decrease in p-AKT-ser473 and p-GSK-3 β -ser9 induced by WT/GFX. However, CIG significantly elevated the activity of PP2A by reducing the demethylation of PP2A catalytic subunit (PP2Ac) at Leu309 and the ratio of PME-1/LCMT in the WT/GFX-treated cells. The results suggest that CIG may be beneficial to the treatment of AD.
    Evidence-based Complementary and Alternative Medicine 12/2013; 2013:108486. DOI:10.1155/2013/108486 · 1.88 Impact Factor
Show more