Serum-stimulated, rapamycin-sensitive phosphorylation sites in the eukaryotic translation initiation factor 4GI

Department of Biochemistry and McGill Cancer Centre, McGill University, 3655 Drummond, Montréal, Québec H3G 1Y6, Canada.
The EMBO Journal (Impact Factor: 10.75). 03/2000; DOI: 10.1093/emboj/19.3.434
Source: PubMed Central

ABSTRACT The eukaryotic translation initiation factor 4G (eIF4G) proteins play a critical role in the recruitment of the translational machinery to mRNA. The eIF4Gs are phosphoproteins. However, the location of the phosphorylation sites, how phosphorylation of these proteins is modulated and the identity of the intracellular signaling pathways regulating eIF4G phosphorylation have not been established. In this report, two-dimensional phosphopeptide mapping demonstrates that the phosphorylation state of specific eIF4GI residues is altered by serum and mitogens. Phosphopeptides resolved by this method were mapped to the C–terminal one-third of the protein. Mass spectrometry and mutational analyses identified the serum-stimulated phosphorylation sites in this region as serines 1108, 1148 and 1192. Phosphoinositide–3–kinase (PI3K) inhibitors and rapamycin, an inhibitor of the kinase FRAP/mTOR (FKBP12–rapamycin-associated protein/mammalian target of rapamycin), prevent the serum-induced phosphorylation of these residues. Finally, the phosphorylation state of N–terminally truncated eIF4GI proteins acquires resistance to kinase inhibitor treatment. These data suggest that the kinases phosphorylating serines 1108, 1148 and 1192 are not directly downstream of PI3K and FRAP/mTOR, but that the accessibility of the C–terminus to kinases is modulated by this pathway(s).


Available from: Nahum Sonenberg, Apr 18, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Messenger RNA (mRNA) translation is highly regulated in cells and plays an integral role in the overall process of gene expression. The initiation phase of translation is considered to be the most rate-limiting and is often targeted by oncogenic signaling pathways to promote global protein synthesis and the selective translation of tumor-promoting mRNAs. Translational control is a crucial component of cancer development as it allows cancer cells to adapt to the altered metabolism that is generally associated with the tumor state. The phosphoinositide 3-kinase (PI3K)/Akt and Ras/mitogen-activated protein kinase (MAPK) pathways are strongly implicated in cancer etiology, and they exert their biological effects by modulating both global and specific mRNA translation. In addition to having respective translational targets, these pathways also impinge on the mechanistic/mammalian target of rapamycin (mTOR), which acts as a critical signaling node linking nutrient sensing to the coordinated regulation of cellular metabolism. mTOR is best known as a central regulator of protein synthesis and has been implicated in an increasing number of pathological conditions, including cancer. In this article, we describe the current knowledge on the roles and regulation of mRNA translation by various oncogenic signaling pathways, as well as the relevance of these molecular mechanisms to human malignancies. This article is part of a Special Issue entitled: Translation and Cancer. Copyright © 2014. Published by Elsevier B.V.
    Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 12/2014; DOI:10.1016/j.bbagrm.2014.11.006 · 5.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their individual functions in this process. In Saccharomyces cerevisiae, eIF4E is the central component of the eIF4F complex, which binds the 5′ cap structure of the mRNA. This complex is significant in many ways. First of all, it is essential for translational initiation, mediating the initial interactions of ribosomes with the mRNA 5′ end. Secondly, because of its key role in interacting with the 5′ end of the mRNA, and possibly also with proteins such as the poly (A) binding protein (PABP) at the 3′ end of the mRNA, the eIF4F complex is thought to be involved in the process of mRNA degradation. Thirdly, eIF4F is a site of translational regulation, responding to signals communicated along the signal transduction pathway that are induced by stress conditions or hormones. To study about the interactions of eIF4E within the eIF4F complex, we tried to find conditions that would enable us to obtain structural data about S. cerevisiae eIF4E/eIF4G/Pab1p interactions. To yield information about the eIF4E/eIF4G/Pab1p complex, affinity chromatography was conducted using synthetic biotinylated capped mRNAs. For this purpose, a capped 55-nucleotide RNA was synthesised and labeled with Biotin-21-UTP at the 3′-end in an in vitro transcription reaction. For Biotin labeling of mRNA, rUTP was substituted with Biotin-21-UTP in the reaction. Soft Link Avidin Resin was used for the isolation of biotinylated mRNA, which can bind eIF4E via the capped structure at the 5′-end of the mRNA and Pab1p via the poly (A) tail at 3′ end. These results confirm that a highly pure eIF4E/eIF4G/Pab1p/RNA complex can be generated using the procedures outlined.
  • Source
    Translation and Its Regulation in Cancer Biology and Medicine, 10/2014; Springer.