Cycling probe technology to quantify and discriminate between wild-type varicella-zoster virus and Oka vaccine strains

Faculty of Clinical Engineering, Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan. Electronic address: .
Journal of virological methods (Impact Factor: 1.78). 06/2013; 193(2). DOI: 10.1016/j.jviromet.2013.06.031
Source: PubMed


Rapid differentiation between wild-type varicella zoster virus (VZV) and Oka-vaccine (vOka) strains is important for monitoring side reactions of varicella vaccination. To develop a high-throughput molecular diagnostic method for the differentiation of wild-type VZV and vOka strains based on cycling probe technology. The primers were designed to amplify common sequences spanning a single nucleotide polymorphism (SNP) in gene 62 of VZV. DNA-RNA chimeric probes (cycling probes) were designed to detect the SNP at nucleotide 105705. The cycling probe real-time PCR assays for VZV wild-type and vOka strains specifically amplified plasmids containing target sequences that ranged between 10 and 1×10(6) copies per reaction. The inter- and intra-assay coefficients of variation were less than 5%. After initial validation studies, the clinical reliability of this method was evaluated using 38 swab samples that were collected from patients suspected of being zoster. Compared to the loop mediated isothermal amplification method, which is defined as the gold standard, cycling probe real-time PCR was highly sensitive and specific. The cycling probe real-time PCR technology is a reliable tool for differentiating between wild-type VZV and vOka strains in clinical samples.

Download full-text


Available from: Yoshiki Kawamura, Sep 22, 2015
15 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The DNA sequences of the Oka varicella vaccine virus (V-Oka) and its parental virus (P-Oka) were completed. Comparison of the sequences revealed 42 base substitutions, which led to 20 amino acid conversions and length differences in tandem repeat regions (R1, R3, and R4) and in an origin of DNA replication. Amino acid substitutions existed in open reading frames (ORFs) 6, 9A, 10, 21, 31, 39, 50, 52, 55, 59, 62, and 64. Of these, 15 base substitutions, leading to eight amino acid substitutions, were in the gene 62 region alone. Further DNA sequence analysis showed that these substitutions were specific for V-Oka and were not present in nine clinical isolates. The immediate-early gene 62 product (IE62) of P-Oka had stronger transactivational activity than the mutant IE62 contained in V-Oka in 293 and CV-1 cells. An infectious center assay of a plaque-purified clone (S7-01) from the V-Oka with 8 amino acid substitutions in ORF 62 showed smaller plaque formation and less-efficient virus-spreading activity than did P-Oka in human embryonic lung cells. Another clone (S-13) with only five substitutions in ORF 62 spread slightly faster than S7-01 but not as effectively as P-Oka. Moreover, transient luciferase assay in 293 cells showed that transactivational activities of IE62s of S7-01 and S7-13 were lower than that of P-Oka. Based on these results, it appears that amino acid substitutions in ORF 62 are responsible for virus growth and spreading from infected to uninfected cells. Furthermore, the Oka vaccine virus was completely distinguishable from P-Oka and 54 clinical isolates by seven restriction-enzyme fragment length polymorphisms that detected differences in the DNA sequence.
    Journal of Virology 12/2002; 76(22):11447-59. DOI:10.1128/JVI.76.22.11447-11459.2002 · 4.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The incidence and severity of herpes zoster and postherpetic neuralgia increase with age in association with a progressive decline in cell-mediated immunity to varicella-zoster virus (VZV). We tested the hypothesis that vaccination against VZV would decrease the incidence, severity, or both of herpes zoster and postherpetic neuralgia among older adults. We enrolled 38,546 adults 60 years of age or older in a randomized, double-blind, placebo-controlled trial of an investigational live attenuated Oka/Merck VZV vaccine ("zoster vaccine"). Herpes zoster was diagnosed according to clinical and laboratory criteria. The pain and discomfort associated with herpes zoster were measured repeatedly for six months. The primary end point was the burden of illness due to herpes zoster, a measure affected by the incidence, severity, and duration of the associated pain and discomfort. The secondary end point was the incidence of postherpetic neuralgia. More than 95 percent of the subjects continued in the study to its completion, with a median of 3.12 years of surveillance for herpes zoster. A total of 957 confirmed cases of herpes zoster (315 among vaccine recipients and 642 among placebo recipients) and 107 cases of postherpetic neuralgia (27 among vaccine recipients and 80 among placebo recipients) were included in the efficacy analysis. The use of the zoster vaccine reduced the burden of illness due to herpes zoster by 61.1 percent (P<0.001), reduced the incidence of postherpetic neuralgia by 66.5 percent (P<0.001), and reduced the incidence of herpes zoster by 51.3 percent (P<0.001). Reactions at the injection site were more frequent among vaccine recipients but were generally mild. The zoster vaccine markedly reduced morbidity from herpes zoster and postherpetic neuralgia among older adults.
    New England Journal of Medicine 06/2005; 352(22):2271-84. DOI:10.1056/NEJMoa051016 · 55.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using real-time fluorescence PCR, we quantitated the numbers of copies of latent varicella-zoster virus (VZV) and herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) genomes in 15 human trigeminal ganglia. Eight (53%) and 1 (7%) of 15 ganglia were PCR positive for HSV-1 or -2 glycoprotein G genes, with means of 2,902 +/- 1,082 (standard error of the mean) or 109 genomes/10(5) cells, respectively. Eleven of 14 (79%) to 13 of 15 (87%) of the ganglia were PCR positive for VZV gene 29, 31, or 62. Pooling of the results for the three VZV genes yielded a mean of 258 +/- 38 genomes/10(5) ganglion cells. These levels of latent viral genome loads have implications for virus distribution in and reactivation from human sensory ganglia.
    Journal of Virology 01/2000; 73(12):10514-8. · 4.44 Impact Factor
Show more