Reinvestigation of the Vilsmeier-Haack Formylation of Triphenylamine

Synlett (Impact Factor: 2.66). 01/1997; 1997(11):1275-1276. DOI: 10.1055/s-1997-1024
1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
    ChemInform 01/2010; 29(9).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this high-technology application, age functional dyes especially polymethine dyes have captured much attention of the researchers due to their immense potential for high-tech uses. Polymethine dyes show promising absorption spectra in the visible range, which can be easily exploited for the use of written text copying, photographic imaging, or photothermographic recording materials. Keeping this in mind, our research is composed of an investigation of two triphenylamino-based polymethine dyes, a known polymethine dye 3 and a new one polymethine dye 5, which have been synthesized by the reaction of 4-(diphenylamino) benzaldehyde 2 and 4,-(phenylazanediyl) dibenzaldehyde 4 with 4,-vinylidene-bis(N, N-dimethylaniline) 1. Based on bis-dimethylaminophenylethylene moiety, the new polymethine dye showed more high absorption spectra in the range of 600–700 nm than that of the known polymethine dye based on bis-dimethylaminophenylethylene moiety. Their maximum spectra were exhibited at 637 nm and 653 nm, respectively. Their leuco-converted reversible colored forms were also investigated.
    Journal of Chemistry. 05/2013; 2013.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Six star-shaped oligomers containing triphenylamine (D1-D3) and benzene unit (D4-D6) as cores have been synthesized by Wittig condensation or Heck coupling reaction using aromatic aldehydes and triphenylphosphonium salts or aromatic halogenated compounds with vinyl triphenylamine. All oligomers have well-defined molecular structure and high purity. Characterization of the oligomers was made by FT-IR, (1)H-NMR spectroscopy, UV-Vis, and fluorescence spectroscopy. The electrochemical behavior was studied by cyclic voltammetry (CV). The cyclic voltammograms have revealed that oligomers undergo quasireversible or irreversible redox processes. The irreversible process is associated with electrochemical polymerization of oligomers by dimerization of unsubstituted triphenylamine groups. Thermal characterization was accomplished by TGA and DSC methods and evidenced that all oligomers were stable materials until 250°C and have formed stable molecular glasses after first heating scan.
    ISRN organic chemistry. 01/2012; 2012:976178.