Article

The oxytocin receptor (OXTR) contributes to prosocial fund allocations in the dictator game and the social value orientations task.

Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel.
PLoS ONE (Impact Factor: 3.53). 01/2009; 4(5):e5535. DOI: 10.1371/journal.pone.0005535
Source: PubMed

ABSTRACT Economic games observe social decision making in the laboratory that involves real money payoffs. Previously we have shown that allocation of funds in the Dictator Game (DG), a paradigm that illustrates costly altruistic behavior, is partially determined by promoter-region repeat region variants in the arginine vasopressin 1a receptor gene (AVPR1a). In the current investigation, the gene encoding the related oxytocin receptor (OXTR) was tested for association with the DG and a related paradigm, the Social Values Orientation (SVO) task.
Association (101 male and 102 female students) using a robust-family based test between 15 single tagging SNPs (htSNPs) across the OXTR was demonstrated with both the DG and SVO. Three htSNPs across the gene region showed significant association with both of the two games. The most significant association was observed with rs1042778 (p = 0.001). Haplotype analysis also showed significant associations for both DG and SVO. Following permutation test adjustment, significance was observed for 2-5 locus haplotypes (p<0.05). A second sample of 98 female subjects was subsequently and independently recruited to play the dictator game and was genotyped for the three significant SNPs found in the first sample. The rs1042778 SNP was shown to be significant for the second sample as well (p = 0.004, Fisher's exact test).
The demonstration that genetic polymorphisms for the OXTR are associated with human prosocial decision making converges with a large body of animal research showing that oxytocin is an important social hormone across vertebrates including Homo sapiens. Individual differences in prosocial behavior have been shown by twin studies to have a substantial genetic basis and the current investigation demonstrates that common variants in the oxytocin receptor gene, an important element of mammalian social circuitry, underlie such individual differences.

0 Bookmarks
 · 
159 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Some evidence suggests that genetic polymorphisms in oxytocin pathway genes influence various social behaviors, but findings thus far have been mixed. Many studies have been based in small samples and there is possibility of publication bias. Using data from 2 large U.S. prospective cohorts with over 11,000 individuals, we investigated 88 SNPs in OXTR, AVPR1A, and CD38, in relation to social integration (measured as social connectedness in both binary and continuous forms and being continuously married). After correction for multiple testing only one SNP in CD38 (rs12644506) was significantly associated with social integration and that SNP predicted when using a dichotomized indicator of social connectedness (adjusted p=0.02), but not a continuous measure of social connectedness or the continuously married outcome. A significant gender-heterogeneous effect was identified in one OXTR SNP on dichotomized social connectedness; specifically, rs4686302 T allele was nominally associated with social connectedness in men, whereas the association direction was opposite in women (adjusted gender heterogeneity p=0.02). Furthermore, the rs53576 A allele was significantly associated with social connectedness only in women, and the effect magnitude was stronger in a dominant genetic model (adjusted p=0.003). In summary, our findings suggested that common genetic variants of OXTR, CD38, and AVPR1A are not associated with social integration as measured in this study using the simplified Berkman-Syme Social Network Index, but these findings and other work hint that effects may be modified by gender or other social experiences. Further work considering genetic pathways in relation to social integration may be more fruitful if these additional factors can be more comprehensively evaluated.
    Psychoneuroendocrinology 10/2013; · 5.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The study of prosocial behavior-altruism, cooperation, trust, and the related moral emotions-has matured enough to produce general scholarly consensus that prosociality is widespread, intuitive, and rooted deeply within our biological makeup. Several evolutionary frameworks model the conditions under which prosocial behavior is evolutionarily viable, yet no unifying treatment exists of the psychological decision-making processes that result in prosociality. Here, we provide such a perspective in the form of the sociocultural appraisals, values, and emotions (SAVE) framework of prosociality. We review evidence for the components of our framework at four levels of analysis: intrapsychic, dyadic, group, and cultural. Within these levels, we consider how phenomena such as altruistic punishment, prosocial contagion, self-other similarity, and numerous others give rise to prosocial behavior. We then extend our reasoning to chart the biological underpinnings of prosociality and apply our framework to understand the role of social class in prosociality.
    Annual Review of Psychology 01/2014; 65:425-60. · 20.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: When people are confronted with social dilemmas, their decision-making strategies tend to be associated with individual social preferences; prosocials have an intrinsic willingness to cooperate, while proselfs need extrinsic motivators signaling personal gain. In this study, the biological roots for the proselfs/prosocials concept are explored by investigating the neural correlates of cooperative versus defect decisions when participants engage in a series of one-shot, anonymous prisoner's dilemma situations. Our data are in line with previous studies showing that prosocials activate several social cognition regions of the brain more than proselfs (here: medial prefrontal cortex, temporo-parietal junction, and precuneus BA 7 (Brodmann area 7), and that dispositional trust positively affects prosocials' decisions to cooperate. At the neural level, however, dispositional trust appears to exert a greater marginal effect on brain activity of proselfs in three social cognition regions, which does not translate into an increase in cooperation. An event-related analysis shows that cooperating prosocials show significantly more activation in the precuneus (BA 7) than proselfs. Based on previous research, we interpret this result to be consistent with prosocials' enhanced tendency to infer the intentions of others in social dilemma games, and the importance of establishing norm congruence when they decide to cooperate.
    Social neuroscience 12/2013; · 3.17 Impact Factor

Full-text (2 Sources)

View
41 Downloads
Available from
May 22, 2014