Coupling of the biosynthesis and export of the DNA gyrase inhibitor simocyclinone in Streptomyces antibioticus.

Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK.
Molecular Microbiology (Impact Factor: 5.03). 06/2009; 72(6):1462-74. DOI: 10.1111/j.1365-2958.2009.06735.x
Source: PubMed

ABSTRACT Because most antibiotics are potentially lethal to the producing organism, there must be mechanisms to ensure that the machinery responsible for export of the mature antibiotic is in place at the time of biosynthesis. Simocyclinone D8 is a potent DNA gyrase inhibitor produced by Streptomyces antibioticus Tü 6040. Within the simocyclinone biosynthetic cluster are two divergently transcribed genes, simR and simX, encoding proteins that resemble the TetR/TetA repressor-efflux pump pair that cause widespread resistance to clinically important tetracyclines. Engineered expression of simX from a strong, heterologous promoter conferred high level simocyclinone D8 resistance on Streptomyces lividans, showing that simX encodes a simocyclinone efflux pump. Transcription of simX is controlled by SimR, which directly represses the simX and simR promoters by binding to two operator sites in the simX-simR intergenic region. Simocyclinone D8 abolishes DNA binding by SimR, providing a mechanism that couples the biosynthesis of simocyclinone to its export. In addition, an intermediate in the biosynthetic pathway, simocyclinone C4, which is essentially inactive as a DNA gyrase inhibitor, also induces simX expression in vivo and relieves simX repression by SimR in vitro.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Gougerotin is a peptidyl nucleoside antibiotic. It functions as a specific inhibitor of protein synthesis by binding ribosomal peptidyl transferase and exhibits a broad spectrum of biological activities. gouR, situated in the gougerotin biosynthetic gene cluster, encodes a TetR family transcriptional regulatory protein. Gene disruption and genetic complementation revealed that gouR plays an important role in the biosynthesis of gougerotin. Transcriptional analysis suggested that GouR represses the transcription of gouL-B operon consisting of 11 structural genes and activates the transcription of major facilitator superfamily (MFS) transporter gene (gouM). Electrophoresis mobility shift assays (EMSAs) and DNase I footprinting experiments showed that GouR has specific DNA-binding activity for the promoter regions of gouL, gouM and gouR. Our data suggested that GouR modulates gougerotin production by coordinating its biosynthesis and export in Streptomyces graminearus.
    Applied and Environmental Microbiology 11/2013; DOI:10.1128/AEM.03003-13 · 3.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Jadomycin production is under complex regulation in Streptomyces venezuelae. Here, another cluster-situated regulator, JadR*, was shown to negatively regulate jadomycin biosynthesis by binding to four upstream regions of jadY, jadR1, jadI and jadE in jad gene cluster, respectively. The transcriptional levels of four target genes of JadR* increased significantly in ΔjadR*, confirming that these genes were directly repressed by JadR*. Jadomycin B (JdB) and its biosynthetic intermediates 2,3-dehydro-UWM6 (DHU), dehydrorabelomycin (DHR) and jadomycin A (JdA) modulated the DNA-binding activities of JadR* on the jadY promoter, with DHR giving the strongest dissociation effects. Direct interactions between JadR* and these ligands were further demonstrated by surface plasmon resonance, which showed that DHR has the highest affinity for JadR*. However, only DHU and DHR could induce the expression of jadY and jadR* in vivo. JadY is the FMN/FAD reductase suppling cofactors FMNH2 /FADH2 for JadG, an oxygenase, that catalyzes the conversion of DHR to JdA. Therefore, our results revealed that JadR* and early pathway intermediates, particularly DHR, regulate cofactor supply by a convincing case of a feed-forward mechanism. Such delicate regulation of expression of jadY could ensure a timely supply of cofactors FMNH2 /FADH2 for jadomycin biosynthesis, and avoid unnecessary consumption of NAD(P)H.
    Molecular Microbiology 09/2013; DOI:10.1111/mmi.12406 · 5.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antibiotic-producing bacteria encode antibiotic resistance genes that protect them from the biologically active molecules that they produce. The expression of these genes needs to occur in a timely manner: either in advance of or concomitantly with biosynthesis. It appears that there have been at least two general solutions to this problem. In many cases, the expression of resistance genes is tightly linked to that of antibiotic biosynthetic genes. In others, the resistance genes can be induced by their cognate antibiotics or by intermediate molecules from their biosynthetic pathways. The regulatory mechanisms that couple resistance to antibiotic biosynthesis are mechanistically diverse and potentially relevant to the origins of clinical antibiotic resistance.
    Molecular Microbiology 06/2014; DOI:10.1111/mmi.12689 · 5.03 Impact Factor