Association Analyses of RANKL/RANK/OPG Gene Polymorphisms with Femoral Neck Compression Strength Index Variation in Caucasians

Key Laboratory of Biomedical Information Engineering, Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
Calcified Tissue International (Impact Factor: 2.75). 06/2009; 85(2):104-12. DOI: 10.1007/s00223-009-9255-5
Source: PubMed

ABSTRACT Femoral neck compression strength index (fCSI), a novel phenotypic parameter that integrates bone density, bone size, and body size, has significant potential to improve hip fracture risk assessment. The genetic factors underlying variations in fCSI, however, remain largely unknown. Given the important roles of the receptor activator of the nuclear factor-kappaB ligand/receptor activator of the nuclear factor-kappaB/osteoprotegerin (RANKL/RANK/OPG) pathway in the regulation of bone remodeling, we tested the associations between RANKL/RANK/OPG polymorphisms and variations in fCSI as well as its components (femoral neck bone mineral density [fBMD], femoral neck width [FNW], and weight). This was accomplished with a sample comprising 1873 subjects from 405 Caucasian nuclear families. Of the 37 total SNPs studied in these three genes, 3 SNPs, namely, rs12585014, rs7988338, and rs2148073, of RANKL were significantly associated with fCSI (P = 0.0007, 0.0007, and 0.0005, respectively) after conservative Bonferroni correction. Moreover, the three SNPs were approximately in complete linkage disequilibrium. Haplotype-based association tests corroborated the single-SNP results since haplotype 1 of block 1 of the RANKL gene achieved an even more significant association with fCSI (P = 0.0003) than any of the individual SNPs. However, we did not detect any significant associations of these genes with fBMD, FNW, or weight. In summary, our findings suggest that the RANKL gene may play an important role in variation in fCSI, independent of fBMD and non-fBMD components.

Download full-text


Available from: Yan Guo, Nov 26, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Osteoporosis is characterized by low bone mineral density and structural deterioration of bone tissue, leading to an increased risk of fractures. It is the most common metabolic bone disorder worldwide, affecting one in three women and one in eight men over the age of 50. In the past 15 years, a large number of genes have been reported as being associated with osteoporosis. However, only in the past 4 years we have witnessed an accelerated pace in identifying and validating osteoporosis susceptibility loci. This increase in pace is mostly due to large-scale association studies, meta-analyses, and genome-wide association studies of both single nucleotide polymorphisms and copy number variations. A comprehensive review of these developments revealed that, to date, at least 15 genes (VDR, ESR1, ESR2, LRP5, LRP4, SOST, GRP177, OPG, RANK, RANKL, COLIA1, SPP1, ITGA1, SP7, and SOX6) can be reasonably assigned as confirmed osteoporosis susceptibility genes, whereas, another >30 genes are promising candidate genes. Notably, confirmed and promising genes are clustered in three biological pathways, the estrogen endocrine pathway, the Wnt/beta-catenin signaling pathway, and the RANKL/RANK/OPG pathway. New biological pathways will certainly emerge when more osteoporosis genes are identified and validated. These genetic findings may provide new routes toward improved therapeutic and preventive interventions of this complex disease.
    Human Genetics 03/2010; 127(3):249-85. DOI:10.1007/s00439-009-0773-z · 4.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Parathyroid hormone (PTH) is a principal regulator of calcium homeostasis. Previously, we studied single-nucleotide polymorphisms present in the major genes in the PTH pathway (PTH, PTHrP, PTHR1, PTHR2) in relation to bone mineral density (BMD) and fracture incidence. We found that haplotypes of the PTH gene were associated with fracture risk independent of BMD. In the present study, we evaluated the relationship between PTH haplotypes and femoral neck bone size. Hip structure analysis and BMD of the femoral neck was assessed by DXA in elderly women from the Malmö Osteoporosis Prospective Risk Assessment study. Data on hip fracture, sustained as a result of low trauma, after the age of 45 years were also analyzed. Haplotypes derived from six polymorphisms in the PTH locus were analyzed in 750 women. Carriers of haplotype 9 had lower values for hip geometry parameters cross-sectional moment of inertia (P = 0.029), femoral neck width (P = 0.049), and section modulous (P = 0.06), suggestive of increased fracture risk at the hip. However, this did not translate into an increased incidence of hip fracture in the studied population. Women who suffered a hip fracture compared to those who had not had longer hip axis length (HAL) (P < 0.001). HAL was not significantly different among haplotypes. Polymorphisms in the PTH gene are associated with differences in aspects of femoral neck geometry in elderly women; however, the major predictor of hip fracture in our population was HAL, to which PTH gene variation does not contribute significantly.
    Calcified Tissue International 03/2010; 86(5):359-66. DOI:10.1007/s00223-010-9351-6 · 2.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteoporosis is a complex human disease that results in increased susceptibility to fragility fractures. It can be phenotypically characterized using several traits, including bone mineral density, bone size, bone strength, and bone turnover markers. The identification of gene variants that contribute to osteoporosis phenotypes, or responses to therapy, can eventually help individualize the prognosis, treatment, and prevention of fractures and their adverse outcomes. Our previously published reviews have comprehensively summarized the progress of molecular genetic studies of gene identification for osteoporosis and have covered the data available to the end of September 2007. This review represents our continuing efforts to summarize the important and representative findings published between October 2007 and November 2009. The topics covered include genetic association and linkage studies in humans, transgenic and knockout mouse models, as well as gene-expression microarray and proteomics studies. Major results are tabulated for comparison and ease of reference. Comments are made on the notable findings and representative studies for their potential influence and implications on our present understanding of the genetics of osteoporosis.
    Endocrine reviews 03/2010; 31(4):447-505. DOI:10.1210/er.2009-0032 · 19.36 Impact Factor
Show more