Epigenomic profiling indicates a role for DNA methylation in early postnatal liver development.

Department of Pediatrics, Baylor College of Medicine, USDA Children's Nutrition Research Center, 1100 Bates St., Ste. 5080, Houston, TX 77030, USA.
Human Molecular Genetics (Impact Factor: 6.68). 06/2009; 18(16):3026-38. DOI: 10.1093/hmg/ddp241
Source: PubMed

ABSTRACT The question of whether DNA methylation contributes to the stabilization of gene expression patterns in differentiated mammalian tissues remains controversial. Using genome-wide methylation profiling, we screened 3757 gene promoters for changes in methylation during postnatal liver development to test the hypothesis that developmental changes in methylation and expression are temporally correlated. We identified 31 genes that gained methylation and 111 that lost methylation from embryonic day 17.5 to postnatal day 21. Promoters undergoing methylation changes in postnatal liver tended not to be associated with CpG islands. At most genes studied, developmental changes in promoter methylation were associated with expression changes, suggesting both that transcriptional inactivity attracts de novo methylation, and that transcriptional activity can override DNA methylation and successively induce developmental hypomethylation. These in vivo data clearly indicate a role for DNA methylation in mammalian differentiation, and provide the novel insight that critical windows in mammalian developmental epigenetics extend well beyond early embryonic development.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to investigate the effects of maternal vitamin D restriction on carbohydrate metabolism and alterations in the pancreas and liver in the F1 and F2 generations. Therefore, we studied the first two generations of offspring (F1 and F2) of Swiss mice from mothers fed one of two diets: SC (standard chow) or VitD(-) (vitamin D-deficient). Biometric, biochemical and molecular analyses were performed. The VitD-F1 mice had greater body mass (BM) than the SC-F1 mice. The BM changes were accompanied by increased insulin secretion. The VitD-F1 mice had a higher area under the curve in the oral glucose tolerance test and exhibited larger islet diameters than the SC-F1 mice. In addition, the VitD-F1 mice showed marked diffuse hepatic steatosis and higher expression of fatty acid synthase (FAS) protein than the SC animals in either generation or the ViD-F2 mice. Diet accounted for a greater fraction of the total variation for BM, fat pad mass and insulin secretion than generation. Both diet and generation contributed to the variation in steatosis in the liver, islet diameter and expression of FAS. However, interactions between diet and generation were observed only for insulin secretion, steatosis in the liver and FAS expression. In conclusion, these results provide compelling evidence that maternal vitamin D restriction affects the development of the offspring and leads to metabolic alterations accompanied by structural alterations in the liver and pancreas, especially in the F1 generation.
    Journal of Nutritional Science and Vitaminology 01/2013; 59(5):367-74. DOI:10.3177/jnsv.59.367 · 0.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our many current environmental challenges, including worldwide abnormal weather, global warming, and pollution, necessitate a new and innovative strategy for animal production for the next generation. This strategy should incorporate not only higher-efficiency production, but also advanced biological concepts and multi-functional agricultural techniques, into environmentally friendly systems. Recent research has discovered a unique phenomenon referred to as 'foetal and neonatal programming', which is based on 'the developmental origins of health and disease (DOHaD)' concept. These studies have shown that alterations in foetal and early postnatal nutrition and endocrine status may result in developmental adaptations that permanently change the structure, physiology and metabolism of affected animals during adult life. Ruminants fill an important ecological niche that capitalises on the symbiotic relationship between fibre-fermenting ruminal microbes and the mammalian demand for usable nutrients. The timing of the perturbation in maternal nutrient availability plays an important role in determining the effect that the foetal and neonatal programming will have on the developing placenta or foetus and offspring performance. Developmental programming through nutritional manipulations may help the ruminant, as an effective grass-protein converter, fulfil its production potential.
    Animal Production Science 01/2015; 55(2):145. DOI:10.1071/AN14467 · 1.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Primordial germ cells (PGCs) are the embryonic precursors of the gametes and represent the founder cells of the germline. Specification of PGCs is a critical divergent point during embryogenesis. Whereas the somatic lineages will ultimately perish, cells of the germline have the potential to form a new individual and hence progress to the next generation. It is therefore critical that the genome emerges intact and carrying the appropriate epigenetic information during its passage through the germline. To ensure this fidelity of transmission, PGC development encompasses extensive epigenetic reprogramming. The low cell numbers and relative inaccessibility of PGCs present a challenge to those seeking mechanistic understanding of the crucial developmental and epigenetic processes in this most fascinating of lineages. Here, we present an overview of PGC development in the mouse and compare this with the limited information available for other mammalian species. We believe that a comparative approach will be increasingly important to uncover the extent to which mechanisms are conserved and reveal the critical steps during PGC development in humans.
    Current Topics in Developmental Biology 01/2013; 104:149-87. DOI:10.1016/B978-0-12-416027-9.00005-X · 4.21 Impact Factor

Similar Publications