Article

Metabolomic analysis reveals a common pattern of metabolic re-programming during invasion of three host plant species by Magnaporthe grisea.

Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, Aberystwyth, UK.
The Plant Journal (Impact Factor: 6.58). 06/2009; 59(5):723-37. DOI:10.1111/j.1365-313X.2009.03912.x
Source: PubMed

ABSTRACT The mechanisms by which biotrophic and hemi-biotrophic fungal pathogens simultaneously subdue plant defences and sequester host nutrients are poorly understood. Using metabolite fingerprinting, we show that Magnaporthe grisea, the causal agent of rice blast disease, dynamically re-programmes host metabolism during plant colonization. Identical patterns of metabolic change occurred during M. grisea infections in barley, rice and Brachypodium distachyon. Targeted metabolite profiling by GC-MS confirmed the modulation of a conserved set of metabolites. In pre-symptomatic tissues, malate and polyamines accumulated, rather than being utilized to generate defensive reactive oxygen species, and the levels of metabolites associated with amelioration of redox stress in various cellular compartments increased dramatically. The activity of NADP-malic enzyme and generation of reactive oxygen species were localized to pathogen penetration sites, and both appeared to be suppressed in compatible interactions. Early diversion of the shikimate pathway to produce quinate was observed, as well as accumulation of non-polymerized lignin precursors. These data are consistent with modulation of defensive phenylpropanoid metabolism by M. grisea and the inability of susceptible hosts to mount a hypersensitive reaction or produce lignified papillae (both involving reactive oxygen species) to restrict pathogen invasion. Rapid proliferation of M. grisea hyphae in plant tissue after 3 days was associated with accelerated nutrient acquisition and utilization by the pathogen. Conversion of photoassimilate into mannitol and glycerol for carbon sequestration and osmolyte production appear to drive hyphal growth. Taken together, our results suggest that fungal pathogens deploy a common metabolic re-programming strategy in diverse host species to suppress plant defence and colonize plant tissue.

0 0
 · 
2 Bookmarks
 · 
113 Views
  • [show abstract] [hide abstract]
    ABSTRACT: Grapevine is of worldwide economic importance due to wine production. However, this culture is often affected by pathogens causing severe harvest losses. Understanding host-pathogen relationships may be a key to solve this problem. In this paper, we evaluate the direct flow injection by electrospray - Fourier transform ion cyclotron resonance mass spectrometry (MS) of leaf extracts as a rapid method for the study of grapevine response to downy mildew (Plasmopara viticola) attack. The comparison of MS profiles obtained from control and infected leaves of different levels of resistant grapevines highlights several classes of metabolites (mainly saccharides, acyl lipids, hydroxycinnamic acids derivatives and flavonoids) which are identified using high resolution MS and tandem MS (MS/MS). Statistical analyses of 19 markers show a clear segregation between inoculated and healthy samples. This study points out relative high levels of disaccharides, acyl lipids and glycerophosphoinositol in inoculated samples. Sulfoquinovosyl diacylglycerols also emerge as possible metabolites involved in plant defense.
    Analytica chimica acta 09/2013; 795:44-51. · 4.31 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Fusarium wilt of banana is one of the most destructive diseases in the world. This disease has caused heavy losses in major banana production areas. Except for molecular breeding methods based on plant defense mechanisms, effective methods to control the disease are still lacking. Dynamic changes in defense mechanisms between susceptible, moderately resistant, and highly resistant banana and Fusarium oxysporum f. sp. cubense tropical race 4 (Foc4) at the protein level remain unknown. This research reports the proteomic profile of three banana cultivars in response to Foc4 and transcriptional levels correlated with their sequences for the design of disease control strategies by molecular breeding. Thirty-eight differentially expressed proteins were identified to function in cell metabolism. Most of these proteins were positively regulated after Foc4 inoculation. These differentially regulated proteins were found to have important functions in banana defense response. Functional categories implicated that these proteins were associated with pathogenesis-related (PR) response; isoflavonoid, flavonoid, and anthocyanin syntheses; cell wall strengthening; cell polarization; reactive oxygen species production and scavenging; jasmonic acid-, abscisic acid-, and auxin-mediated signaling conduction; molecular chaperones; energy; and primary metabolism. By comparing the protein profiles of resistant and susceptible banana cultivars, many proteins showed obvious distinction in their defense mechanism functions. PR proteins in susceptible 'Brazil' were mainly involved in defense. The proteins related to PR response, cell wall strengthening and antifungal compound synthesis in moderately resistant 'Nongke No.1' were mainly involved in defense. The proteins related to PR response, cell wall strengthening, and antifungal compound synthesis in highly resistant 'Yueyoukang I' were mainly involved in defense. 12 differentially regulated genes were selected to validate through quantitative real time PCR method. Quantitative RT-PCR analyses of these selected genes corroborate with their respective protein abundance after pathogen infection. This report is the first to use proteomic profiling to study the molecular mechanism of banana roots infected with Foc4. The differentially regulated proteins involved in different defense pathways are likely associated with different resistant levels of the three banana cultivars.
    Proteome Science 09/2013; 11(1):41. · 2.42 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Proline (Pro) dehydrogenase (ProDH) potentiates the oxidative burst and cell death of the plant Hypersensitive Response (HR) by mechanisms not yet elucidated. ProDH converts Pro into [increment]1 pyrroline-5-carboxylate (P5C) and can act together with P5C dehydrogenase (P5CDH) to produce Glu, or with P5C reductase (P5CR) to regenerate Pro and thus stimulate the Pro/P5C cycle. To better understand the effects of ProDH in HR, we studied the enzyme at three stages of the defense response differing in their ROS and cell death levels. In addition, we tested if ProDH requires P5CDH to potentiate HR. Control and infected leaves of wild type and p5cdh plants were used to monitor ProDH activity, in vivo Pro catabolism, amino acid content, and gene expression. Wild type plants activated ProDH at all HR stages. They did not consume Pro during maximal ROS accumulation, and maintained almost basal P5C levels at all conditions. p5cdh mutants activated ProDH as wild type plants. They achieved maximum oxidative burst and cell death levels producing normal HR lesions, but evidenced premature defense activation. ProDH activation has different effects on HR. Before the oxidative burst it leads to Pro consumption involving the action of P5CDH. During the oxidative burst, ProDH becomes functionally uncoupled to P5CDH and apparently works with P5CR. The absence of P5CDH does not reduce ROS, cell death, or pathogen resistance, indicating this enzyme is not accompanying ProDH in the potentiation of these defense responses. In contrast, p5cdh infected plants displayed increased ROS burst and earlier initiation of HR cell death. In turn, our results suggest that ProDH may sustain HR by participating in the Pro/P5C cycle, whose action on HR must be formally evaluated in a future.
    BMC Plant Biology 01/2014; 14(1):21. · 4.35 Impact Factor

Full-text (4 Sources)

View
93 Downloads
Available from
Sep 20, 2012