Article

The fabrication of a carbon nanotube transparent conductive film by electrophoretic deposition and hot-pressing transfer.

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, People's Republic of China.
Nanotechnology (Impact Factor: 3.67). 07/2009; 20(23):235707. DOI: 10.1088/0957-4484/20/23/235707
Source: PubMed

ABSTRACT A super-flexible single-walled carbon nanotube (SWCNT) transparent conductive film (TCF) was produced based on a combination of electrophoretic deposition (EPD) and hot-pressing transfer. EPD was performed in a diluted SWCNT suspension with high zeta potential prepared by a pre-dispersion-then-dilution procedure using sodium dodecyl sulfate as the surfactant and negative charge supplier. A SWCNT film was deposited on a stainless steel anode surface by direct current electrophoresis and then transferred to a poly(ethylene terephthalate) substrate by hot-pressing to achieve a flexible SWCNT TCF. The SWCNT TCF obtained by this technique can achieve a sheet resistance of 220 Omega/sq with 81% transparency at 550 nm wavelength and a strong adhesion to the substrate. More importantly, no decrease in the conductivity of the SWCNT TCF was detected after 10 000 cycles of repeated bending. The result indicates that the EPD and hot-pressing transfer technique is an effective approach for fabricating a carbon nanotube TCF with excellent flexibility.

0 Bookmarks
 · 
122 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Efficient dispersion and electrophoretic deposition (EPD) of multiwalled carbon nanotubes (MWCNTs) was achieved using organic dyes, such as pyrocatechol violet (PV) and m-cresol purple (CP). The problem of MnO2 nanoparticle dispersion in concentrated suspensions was addressed by the use of PV as a dispersant. The analysis and comparison of experimental data for PV and CP provided insight into the influence of chemical structures of the dyes on their adsorption on MWCNTs and MnO2. The adsorption of PV on MWCNTs and MnO2 was attributed to π–π interactions and catecholate type bonding, respectively. The EPD yield can be varied by the variation of the PV concentration in the suspensions, deposition voltage and time. It was found that PV can be used as a co-dispersant for EPD of MWCNTs and MnO2 and the fabrication of MnO2–MWCNT composites. The proposed approach offers advantages of uniform distribution of individual components and low binder content in the composite. MnO2–MWCNT films were prepared by EPD for thin film electrodes of electrochemical supercapacitors (ES). Bulk MnO2–MWCNT electrodes with a material loading of 40 mg cm−2 were obtained by the impregnation of Ni foam current collectors. The highest specific capacitance of 5.9 F cm−2 (148 F g−1) was achieved. The composite materials are promising for ES applications.
    09/2013; 1(40). DOI:10.1039/C3TA12458D
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Izvod U radu su prikazani rezultati ispitivanja strukturnih, električnih i optičkih osobina tankih slojeva jednoslojnih ugljeničnih nanotuba deponovanih na bakarnu podlogu i potom prenetih na polimetil metakrilat (PMMA). Osobine deponovanih slojeva su menjane promenom raz-ličitih parametara: temperature podloge, jačine električnog polja i vremena deponovanja. Mikroskopija atomske sile je korišćena da bi se proučio mehanizam deponovanja tankih slojeva ugljeničnih nanotuba na bakarnu podlogu metodom elektroforeze. Primenom Rama-nove spektroskopije utvrđeno je da su ugljenične nanotube oksidisale pri deponovanju. Korišćenjem Furijeove infracrvene spektroskopije utvrđeno je prisustvo COOH grupe, kao i prisustvo Cu 2 O koji su nastali tokom procesa deponovanja elektroforezom. Tanki slojevi ugljeničnih nanotuba preneti su sa bakarne podloge na polimetil-metakrilat i zatim je merena njihova slojna otpornost kao i transmitansa. Najniža vrednost slojne otpornosti tankih slojeva ugljeničnih nanotuba bila je 360 Ω/kv pri transmitansi sloja od 79%. Ključne reči: jednoslojne ugljenične nanotube; elektroforeza; Ramanova spektroskopija; mikroskopija atomske sile. Jednoslojne ugljenične nanotube predstavljaju važ-nu grupu nanomaterijala sa jedinstvenim električnim, hemijskim, optičkim i mehaničkim osobinama [1,2]. Ovakve osobine ih čine mogućim kandidatima za pri-menu u nanoelektronici, uređajima sa emisijom polja, senzorima itd [3–9]. Međutim, široka primena uglje-ničnih nanotuba u ovim oblastima je ograničena zbog težnje nanotuba da agregiraju. Kontrolisana depozicija tankih slojeva ugljeničnih nanotuba velike provodnosti i dobre homogenosti za primene u elektronici još uvek je nedostižna. Do sada je razvijeno više metoda za deponovanje tankih slojeva jednoslojnih ugljeničnih nanotuba: deponovanje slojeva na rotirajuću podlogu delovanjem centrifugalne sile (eng. spin coating) [10], deponovanje slojeva umakanjem (eng. dip coating) [11,12], deponovanje slojeva raspršiva-njem (spray coating) [13], vakuumska filtracija [14], he-mijsko deponovanje iz parne faze [15], metod štampe [16], Langmir–Blodžet metod [17]. Jedna od metoda za deponovanje tankih slojeva ug-ljeničnih nanotuba je elektroforeza [18]. Ovaj postupak se koristi za deponovanje koloidnih neorganskih čestica na provodne podloge [19]. Elektroforeza se pokazala kao koristan i jeftin postupak za deponovanje tankih Prepiska: Z.M. Marković, , Institut za nuklearne nauke Vinča, Univer-zitet u Beogradu, p.pr.
  • Graphene 01/2012; 01(01):1-13. DOI:10.4236/graphene.2012.11001

Preview

Download
2 Downloads
Available from