Article

A role for casein kinase 2 in the mechanism underlying circadian temperature compensation.

Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA.
Cell (Impact Factor: 31.96). 06/2009; 137(4):749-60. DOI: 10.1016/j.cell.2009.03.019
Source: PubMed

ABSTRACT Temperature compensation of circadian clocks is an unsolved problem with relevance to the general phenomenon of biological compensation. We identify casein kinase 2 (CK2) as a key regulator of temperature compensation of the Neurospora clock by determining that two long-standing clock mutants, chrono and period-3, displaying distinctive alterations in compensation encode the beta1 and alpha subunits of CK2, respectively. Reducing the dose of these subunits, particularly beta1, significantly alters temperature compensation without altering the enzyme's Q(10). By contrast, other kinases and phosphatases implicated in clock function do not play appreciable roles in temperature compensation. CK2 exerts its effects on the clock by directly phosphorylating FREQUENCY (FRQ), and this phosphorylation is compromised in CK2 hypomorphs. Finally, mutation of certain putative CK2 phosphosites on FRQ, shown to be phosphorylated in vivo, predictably alters temperature compensation profiles effectively phenocopying CK2 mutants.

0 Bookmarks
 · 
78 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Casein kinase CK2 is a ubiquitous and conserved phosphate transferase that is critical for the growth and development of eukaryotic cells. In Penicillium oxalicum, one catalytic subunit (CK2A) and two regulatory subunits (CK2B1 and CK2B2) of CK2 were annotated. In this study, CK2 regulatory subunit-defective mutants Δck2B1 and Δck2B2 were constructed to investigate the biological function of CK2 in P. oxalicum. The Δck2B1 strain exhibited minimal changes in morphogenesis and conidiation, whereas the Δck2B2 strain showed delayed conidial germination and drastically reduced conidiation compared with the parent strain. The defect in conidiation in Δck2B2 could be attributed to the reduced expression of transcription factor BrlA. Both Δck2B1 and Δck2B2 showed delayed autolysis in carbon-starvation medium compared with the parent strain. Cellulase and amylase production were decreased considerably in both mutants. The transcript abundances of the main extracellular glycoside hydrolase genes cel7A-2, bgl1, and amy15A, as well as those of three related transcriptional activators (i.e., ClrB, XlnR, and AmyR), were reduced or delayed in the mutants. Epistasis analysis suggested that CK2B1 and CK2B2 might function upstream of transcription factor CreA by inhibiting its repressing activity. In summary, CK2 plays important roles in development and extracellular enzyme production in P. oxalicum, with both unique and overlapping functions performed by the two regulatory subunits.
    Fungal Genetics and Biology 01/2014; · 3.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported emergence and disappearance of circadian molecular oscillations during differentiation of mouse embryonic stem (ES) cells and reprogramming of differentiated cells, respectively. Here we present a robust and stringent in vitro circadian clock formation assay that recapitulates in vivo circadian phenotypes. This assay system first confirmed that a mutant ES cell line lacking Casein Kinase I delta (CKIδ) induced ∼3 hours longer period-length of circadian rhythm than the wild type, which was compatible with recently reported results using CKIδ null mice. In addition, this assay system also revealed that a Casein Kinase 2 alpha subunit (CK2α) homozygous mutant ES cell line developed significantly longer (about 2.5 hours) periods of circadian clock oscillations after in vitro or in vivo differentiation. Moreover, revertant ES cell lines in which mutagenic vector sequences were deleted showed nearly wild type periods after differentiation, indicating that the abnormal circadian period of the mutant ES cell line originated from the mutation in the CK2α gene. Since CK2α deficient mice are embryonic lethal, this in vitro assay system represents the genetic evidence showing an essential role of CK2α in the mammalian circadian clock. This assay was successfully applied for the phenotype analysis of homozygous mutant ES cells, demonstrating that an ES cell-based in vitro assay is available for circadian genetic screening.
    PLoS ONE 01/2013; 8(6):e67241. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: How the molecular mechanisms of stress response are integrated at the cellular level remains obscure. Here we show that the cellular polarity machinery in the fission yeast Schizosaccharomyces pombe undergoes dynamic adaptation to thermal stress resulting in a period of decreased Cdc42 activity and altered, monopolar growth. Cells where the heat stress-associated transcription was genetically upregulated exhibit similar growth patterning in the absence of temperature insults. We identify the Ssa2-Mas5/Hsp70-Hsp40 chaperone complex as repressor of the heat shock transcription factor Hsf1. Cells lacking this chaperone activity constitutively activate the heat-stress-associated transcriptional program. Interestingly, they also exhibit intermittent monopolar growth within a physiological temperature range and are unable to adapt to heat stress. We propose that by negatively regulating the heat stress-associated transcription, the Ssa2-Mas5 chaperone system could optimize cellular growth under different temperature regiments.
    PLoS Genetics 10/2013; 9(10):e1003886. · 8.52 Impact Factor

Full-text (2 Sources)

View
6 Downloads
Available from
May 26, 2014