Article

Chromophore structure of cyanobacterial phytochrome Cph1 in the Pr state: reconciling structural and spectroscopic data by QM/MM calculations.

Technische Universität Berlin, Institut für Chemie, Berlin, Germany.
Biophysical Journal (Impact Factor: 3.83). 06/2009; 96(10):4153-63. DOI: 10.1016/j.bpj.2009.02.029
Source: PubMed

ABSTRACT A quantum mechanics (QM)/molecular mechanics (MM) hybrid method was applied to the Pr state of the cyanobacterial phytochrome Cph1 to calculate the Raman spectra of the bound PCB cofactor. Two QM/MM models were derived from the atomic coordinates of the crystal structure. The models differed in the protonation site of His(260) in the chromophore-binding pocket such that either the delta-nitrogen (M-HSD) or the epsilon-nitrogen (M-HSE) carried a hydrogen. The optimized structures of the two models display small differences specifically in the orientation of His(260) with respect to the PCB cofactor and the hydrogen bond network at the cofactor-binding site. For both models, the calculated Raman spectra of the cofactor reveal a good overall agreement with the experimental resonance Raman (RR) spectra obtained from Cph1 in the crystalline state and in solution, including Cph1 adducts with isotopically labeled PCB. However, a distinctly better reproduction of important details in the experimental spectra is provided by the M-HSD model, which therefore may represent an improved structure of the cofactor site. Thus, QM/MM calculations of chromoproteins may allow for refining crystal structure models in the chromophore-binding pocket guided by the comparison with experimental RR spectra. Analysis of the calculated and experimental spectra also allowed us to identify and assign the modes that sensitively respond to chromophore-protein interactions. The most pronounced effect was noted for the stretching mode of the methine bridge A-B adjacent to the covalent attachment site of PCB. Due a distinct narrowing of the A-B methine bridge bond angle, this mode undergoes a large frequency upshift as compared with the spectrum obtained by QM calculations for the chromophore in vacuo. This protein-induced distortion of the PCB geometry is the main origin of a previous erroneous interpretation of the RR spectra based on QM calculations of the isolated cofactor.

Full-text

Available from: Patrick Scheerer, Apr 01, 2015
0 Bookmarks
 · 
95 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phytochromes are widespread red/far-red photosensory proteins well known as critical regulators of photomorphogenesis in plants. It is often assumed that natural selection would have optimized the light sensing efficiency of phytochromes to minimize non-productive photochemical deexcitation pathways. Surprisingly, the quantum efficiency for the forward Pr-to-Pfr photoconversion of phytochromes seldom exceeds 15% - a value very much lower than that of animal rhodopsins. Exploiting ultrafast wavelength- and temperature-dependent transient absorption spectroscopy, we kinetically resolve multiple pathways within the ultrafast photodynamics of the cyanobacterial phytochrome Cph1 that are primarily responsible for the overall low quantum efficiency. This inhomogeneity primarily reflects a long-lived fluorescent subpopulation that exists in equilibrium with a spectrally distinct, photoactive subpopulation. The fluorescent subpopulation is favored at elevated temperatures, resulting in anomalous excited-state dynamics (slower kinetics at higher temperatures). Spectral and kinetic behavior of the fluorescent subpopulation strongly resembles that of the photochemically compromised and highly fluorescent Y176H variant of Cph1. We present an integrated, heterogeneous model for Cph1 that is based on the observed transient and static spectroscopic signals. Understanding the molecular basis for this dynamic inhomogeneity holds great potential for rational design of efficient phytochrome-based fluorescent and photoswitchable probes.
    Biochemistry 04/2014; 53(17). DOI:10.1021/bi500108s · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The gene slr1393 from Synechocystis sp. PCC6803 encodes a protein composed of three GAF domains, a PAS domain, and a histidine kinase domain. GAF3 is the sole domain able to bind phycocyanobilin (PCB) as chromophore and to accomplish photochemistry: switching between a red-absorbing parental and a green-absorbing photoproduct state (λmax=649 and 536 nm, respectively). Conversions in both directions were followed by time-resolved absorption spectroscopy with the separately expressed GAF3 domain of Slr1393. Global fit analysis of the recorded absorbance changes yielded three lifetimes (3.2 μs, 390 μs, and 1.5 ms) for the red-to-green conversion, and 1.2 μs, 340 μs, and 1 ms for the green-to-red conversion. In addition to the wild-type (WT) protein, 24 mutated proteins were studied spectroscopically. The design of these site-directed mutations was based on sequence alignments with related proteins and by employing the crystal structure of AnPixJg2 (PDB ID: 3W2Z), a Slr1393 orthologous from Anabaena sp. PCC7120. The structure of AnPixJg2 was also used as template for model building, thus confirming the strong structural similarity between the proteins, and for identifying amino acids to target for mutagenesis. Only amino acids in close proximity to the chromophore were exchanged, as these were considered likely to have an impact on the spectral and dynamic properties. Three groups of mutants were found: some showed absorption features similar to the WT protein, a second group showed modified absorbance properties, and the third group had lost the ability to bind the chromophore. The most unexpected result was obtained for the exchange at residue 532 (N532Y). In vivo assembly yielded a red-absorbing, WT-like protein. Irradiation, however, not only converted it into the green-absorbing form, but also produced a 660 nm, further-red-shifted absorbance band. This photoproduct was fully reversible to the parental form upon green light irradiation.
    ChemBioChem 05/2014; 15(8). DOI:10.1002/cbic.201400053 · 3.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Allophycocyanin B (AP-B) is one of the two terminal emitters in phycobilisomes, the unique light-harvesting complexes of cyanobacteria and red algae. Its low excitation-energy level and the correspondingly redshifted absorption and fluorescence emission play an important role in funnelling excitation energy from the hundreds of chromophores of the extramembraneous phycobilisome to the reaction centres within the photosynthetic membrane. In the absence of crystal structures of these low-abundance terminal emitters, the molecular basis for the extreme redshift and directional energy transfer is largely unknown. Here, the crystal structure of trimeric AP-B [(ApcD/ApcB)3] from Synechocystis sp. PCC 6803 at 1.75 Å resolution is reported. In the crystal lattice, eight trimers of AP-B form a porous, spherical, 48-subunit assembly of 193 Å in diameter with an internal cavity of 1.1 × 106 Å3. While the overall structure of trimeric AP-B is similar to those reported for many other phycobiliprotein trimers, the chromophore pocket of the α-subunit, ApcD, has more bulky residues that tightly pack the phycocyanobilin (PCB). Ring D of the chromophores is further stabilized by close interactions with ApcB from the adjacent monomer. The combined contributions from both subunits render the conjugated rings B, C and D of the PCB in ApcD almost perfectly coplanar. Together with mutagenesis data, it is proposed that the enhanced planarity effectively extends the conjugation system of PCB and leads to the redshifted absorption (λmax = 669 nm) and fluorescence emission (679 nm) of the ApcD chromophore in AP-B, thereby enabling highly efficient energy transfer from the phycobilisome core to the reaction centres.
    Acta Crystallographica Section D Biological Crystallography 10/2014; 70(10). DOI:10.1107/S1399004714015776 · 7.23 Impact Factor