Article

The SWI/SNF chromatin remodeling subunit BRG1 is a critical regulator of p53 necessary for proliferation of malignant cells

Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
Oncogene (Impact Factor: 8.56). 06/2009; 28(27):2492-501. DOI: 10.1038/onc.2009.121
Source: PubMed

ABSTRACT The tumor suppressor p53 preserves genome integrity by inducing transcription of genes controlling growth arrest or apoptosis. Transcriptional activation involves nucleosomal perturbation by chromatin remodeling enzymes. Mammalian SWI/SNF remodeling complexes incorporate either the Brahma-related gene 1 (BRG1) or Brahma (Brm) as the ATPase subunit. The observation that tumor cell lines harboring wild-type p53 specifically maintain expression of BRG1 and that BRG1 complexes with p53 prompted us to examine the role of BRG1 in regulation of p53. Remarkably, RNAi depletion of BRG1, but not Brm, led to the activation of endogenous wild-type p53 and cell senescence. We found a proline-rich region unique to BRG1 was required for binding to the histone acetyl transferase protein, CBP, as well as to p53. Ectopic expression of a proline-rich region deletion mutant BRG1 that is defective for CBP binding inhibited p53 destabilization. Importantly, RNAi knockdown of BRG1 and CBP reduced p53 poly-ubiquitination in vivo. In support of p53 inactivation by the combined activities of BRG1 and CBP, we show that DNA damage signals promoted disassociation of BRG1 from CBP, thereby allowing p53 accumulation. Our data demonstrate a novel function of the evolutionarily conserved chromatin remodeling subunit BRG1, which cooperates with CBP to constrain p53 activity and permit cancer cell proliferation.

Download full-text

Full-text

Available from: Elliot J Androphy, Jun 26, 2015
0 Followers
 · 
96 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Slit-Robo GTPase activating protein 3 (srGAP3) is an important modulator of actin cytoskeletal dynamics and has an important influence on a variety of neurodevelopmental processes. Mutations in the SRGAP3 gene on chromosome 3p25 have been found in patients with intellectual disability. Genome-wide association studies and behavioral assays of knockout mice had also revealed SRGAP3 as a risk gene for schizophrenia. We have recently shown that srGAP3 protein undergoes regulated shuttling between the cytoplasm and the nucleus during neuronal development. It is shown here that nuclear-localized srGAP3 interacts with the SWI/SNF remodeling factor Brg1. This interaction is mediated by the C-terminal of srGAP3 and the ATPase motif of Brg1. In the primary cultured rat cortical neurons, the levels of nuclear-localized srGAP3 and its interaction with Brg1 have a significant impact on dendrite complexity. Furthermore, the interaction between srGAP3 and Brg1 was also involved in valporic acid (VPA) -induced neuronal differentiation of Neuro2a cells. We then show that GTP-bound Rac1 and GAP-43 may be potential mediators of nuclear srGAP3 and Brg1. Our results not only indicate a novel signaling pathway that contributes to neuronal differentiation and dendrite morphology, but also implicate a novel molecular mechanism underlying srGAP3 regulation of gene expression.
    Molecular and Cellular Neuroscience 05/2014; DOI:10.1016/j.mcn.2014.02.005 · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chromatin remodeling complex SWI/SNF plays important roles in many cellular processes including transcription, proliferation, differentiation and DNA repair. In this report, we investigated the role of SWI/SNF catalytic subunits Brg1 and Brm in the cellular response to cisplatin in lung cancer and head/neck cancer cells. Stable knockdown of Brg1 and Brm enhanced cellular sensitivity to cisplatin. Repair kinetics of cisplatin DNA adducts revealed that downregulation of Brg1 and Brm impeded the repair of both intrastrand adducts and interstrand crosslinks (ICLs). Cisplatin ICL-induced DNA double strand break repair was also decreased in Brg1 and Brm depleted cells. Altered checkpoint activation with enhanced apoptosis as well as impaired chromatin relaxation was observed in Brg1 and Brm deficient cells. Downregulation of Brg1 and Brm did not affect the recruitment of DNA damage recognition factor XPC to cisplatin DNA lesions, but affected ERCC1 recruitment, which is involved in the later stages of DNA repair. Based on these results, we propose that SWI/SNF chromatin remodeling complex modulates cisplatin cytotoxicity by facilitating efficient repair of the cisplatin DNA lesions.
    Experimental Cell Research 06/2012; 318(16):1973-86. DOI:10.1016/j.yexcr.2012.06.011 · 3.37 Impact Factor
  • Source
    Current Cancer Treatment - Novel Beyond Conventional Approaches, 12/2011; , ISBN: 978-953-307-397-2