Article

c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry.

Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
Oncogene (Impact Factor: 8.56). 06/2009; 28(27):2485-91. DOI: 10.1038/onc.2009.112
Source: PubMed

ABSTRACT Cell proliferation requires the coordinated activity of cytosolic and mitochondrial metabolic pathways to provide ATP and building blocks for DNA, RNA and protein synthesis. Many metabolic pathway genes are targets of the c-myc oncogene and cell-cycle regulator. However, the contribution of c-Myc to the activation of cytosolic and mitochondrial metabolic networks during cell-cycle entry is unknown. Here, we report the metabolic fates of [U-(13)C] glucose in serum-stimulated myc(-/-) and myc(+/+) fibroblasts by (13)C isotopomer NMR analysis. We demonstrate that endogenous c-myc increased (13)C labeling of ribose sugars, purines and amino acids, indicating partitioning of glucose carbons into C1/folate and pentose phosphate pathways, and increased tricarboxylic acid cycle turnover at the expense of anaplerotic flux. Myc expression also increased global O-linked N-acetylglucosamine protein modification, and inhibition of hexosamine biosynthesis selectively reduced growth of Myc-expressing cells, suggesting its importance in Myc-induced proliferation. These data reveal a central organizing function for the Myc oncogene in the metabolism of cycling cells. The pervasive deregulation of this oncogene in human cancers may be explained by its function in directing metabolic networks required for cell proliferation.

Download full-text

Full-text

Available from: Nancy Isern, Jul 05, 2015
0 Followers
 · 
106 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Body development requires the ability to control cell proliferation and metabolism, together with selective 'invasive' cell migration for organogenesis. These requirements are shared with cancer. Human height-associated loci have been recently identified by genome-wide SNP-association studies. Strikingly, most of the more than 100 genes found associated to height appear linked to neoplastic growth, and impose a higher risk for cancer. Height-associated genes drive the HH/PTCH and BMP/TGFβ pathways, with p53, c-Myc, ERα, HNF4A and SMADs as central network nodes. Genetic analysis of body-size-affecting diseases and evidence from genetically-modified animals support this model. The finding that cancer is deeply linked to normal, body-plan master genes may profoundly affect current paradigms on tumor development.
    Biochimica et Biophysica Acta 02/2013; DOI:10.1016/j.bbcan.2013.02.002 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The reorganization of metabolic pathways in cancer facilitates the flux of carbon and reducing equivalents into anabolic pathways at the expense of oxidative phosphorylation. This provides rapidly dividing cells with the necessary precursors for membrane, protein and nucleic acid synthesis. A fundamental metabolic perturbation in cancer is the enhanced synthesis of fatty acids by channeling glucose and/or glutamine into cytosolic acetyl-CoA and upregulation of key biosynthetic genes. This lipogenic phenotype also extends to the production of complex lipids involved in membrane synthesis and lipid-based signaling. Cancer cells display sensitivity to ablation of fatty acid synthesis possibly as a result of diminished capacity to synthesize complex lipids involved in signaling or growth pathways. Evidence has accrued that phosphatidylcholine, the major phospholipid component of eukaryotic membranes, as well as choline metabolites derived from its synthesis and catabolism, contribute to both proliferative growth and programmed cell death. This review will detail our current understanding of how coordinated changes in substrate availability, gene expression and enzyme activity lead to altered phosphatidylcholine synthesis in cancer, and how these changes contribute directly or indirectly to malignant growth. Conversely, apoptosis targets key steps in phosphatidylcholine synthesis and degradation that are linked to disruption of cell cycle regulation, reinforcing the central role that phosphatidylcholine and its metabolites in determining cell fate.
    Critical Reviews in Biochemistry and Molecular Biology 02/2013; 48(1):20-38. DOI:10.3109/10409238.2012.735643 · 5.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metabolism generates oxygen radicals, which contribute to oncogenic mutations. Activated oncogenes and loss of tumor suppressors in turn alter metabolism and induce aerobic glycolysis. Aerobic glycolysis or the Warburg effect links the high rate of glucose fermentation to cancer. Together with glutamine, glucose via glycolysis provides the carbon skeletons, NADPH, and ATP to build new cancer cells, which persist in hypoxia that in turn rewires metabolic pathways for cell growth and survival. Excessive caloric intake is associated with an increased risk for cancers, while caloric restriction is protective, perhaps through clearance of mitochondria or mitophagy, thereby reducing oxidative stress. Hence, the links between metabolism and cancer are multifaceted, spanning from the low incidence of cancer in large mammals with low specific metabolic rates to altered cancer cell metabolism resulting from mutated enzymes or cancer genes.
    Genes & development 05/2012; 26(9):877-90. DOI:10.1101/gad.189365.112 · 12.64 Impact Factor