O’Connor W, Kamanaka M, Booth CJ et al.A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat Immunol 10:603-609

Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA.
Nature Immunology (Impact Factor: 20). 07/2009; 10(6):603-9. DOI: 10.1038/ni.1736
Source: PubMed


Interleukin 23 (IL-23) and IL-17 have been linked to the pathogenesis of several chronic inflammatory disorders, including inflammatory bowel disease. Yet as an important function for IL-23 is emerging, the function of IL-17 in inflammatory bowel disease remains unclear. Here we demonstrate IL-17A-mediated protection in the CD45RBhi transfer model of colitis. An accelerated wasting disease elicited by T cells deficient in IL-17A correlated with higher expression of genes encoding T helper type 1-type cytokines in colon tissue. IL-17A also modulated T helper type 1 polarization in vitro. Furthermore, T cells deficient in the IL-17 receptor elicited an accelerated, aggressive wasting disease relative to that elicited by wild-type T cells in recipient mice. Our data demonstrate a protective function for IL-17 and identify T cells as not only the source but also a target of IL-17 in vivo.

Download full-text


Available from: Richard A Flavell,
  • Source
    • "Indeed, numerous studies have demonstrated pro-colitogenic role of IL-17 in animal models of IBD [8]–[10], [12]. However, challenging this view, other studies in animal models [11], [13], [14] and recent human clinical trials [29], [30] have emerged to suggest that IL-17 plays a protective role. To reassess the role of IL-17 in IBD pathogenesis and underlying mechanisms involved, we adopted a well-know DSS-induced colitis model, namely WT or IL-17KO mice were given DSS in drinking water. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin 17 (IL-17) is a pleiotropic cytokine that acts on both immune and non-immune cells and is generally implicated in inflammatory and autoimmune diseases. Although IL-17 as well as their source, mainly but not limited to Th17 cells, is also abundant in the inflamed intestine, the role of IL-17 in inflammatory bowel disease remains controversial. In the present study, by using IL-17 knockout (KO) mice, we investigated the role of IL-17 in colitis, with special focus on the macrophage subpopulations. Here we show that IL-17KO mice had increased susceptibility to DSS-induced colitis which was associated with decrease in expression of mRNAs implicated in M2 and/or wound healing macrophages, such as IL-10, IL-1 receptor antagonist, arginase 1, cyclooxygenase 2, and indoleamine 2,3-dioxygenase. Lamina propria leukocytes from inflamed colon of IL-17KO mice contained fewer CD11b+Ly6C+MHC Class II+ macrophages, which were derived, at least partly, from blood monocytes, as compared to those of WT mice. FACS-purified CD11b+ cells from WT mice, which were more abundant in Ly6C+MHC Class II+ cells, expressed increased levels of genes associated M2/wound healing macrophages and also M1/proinflammatory macrophages. Depletion of this population by topical administration of clodronate-liposome in the colon of WT mice resulted in the exacerbation of colitis. These results demonstrate that IL-17 confers protection against the development of severe colitis through the induction of an atypical M2-like macrophage subpopulation. Our findings reveal a previously unappreciated mechanism by which IL-17 exerts a protective function in colitis.
    PLoS ONE 09/2014; 9(9):e108494. DOI:10.1371/journal.pone.0108494 · 3.23 Impact Factor
  • Source
    • "However, in DSS (Dextran Sodium Sulphate)-induced colitis, it acts in a protective fashion [30]. Meanwhile, Rag1−/− hosts transferred with IL-17A−/− CD4+ CD45RBhigh T cells show more severe colitis compared to Rag1−/− mice received corresponding wild type CD4+ T cells, accompanying by increased IFN-γ level in colon [31]. Thus, IL-17A may modulate Th1 polarization. "
    [Show abstract] [Hide abstract]
    ABSTRACT: IFN-γ is a signature Th1 cell associated cytokine critical for the inflammatory response in autoimmunity with both pro-inflammatory and potentially protective functions. IL-17A is the hallmark of T helper 17 (Th17) cell subsets, produced by γδT, CD8+ T, NK and NKT cells. We have taken advantage of our colony of IL-2Rα-/- mice that spontaneously develop both autoimmune cholangitis and inflammatory bowel disease. In this model CD8+ T cells mediate biliary ductular damage, whereas CD4+ T cells mediate induction of colon-specific autoimmunity. Importantly, IL-2Rα-/- mice have high levels of interferon γ (IFN-γ), and interleukin-17A (IL-17A). We produced unique double deletions of mice that were either IL-17A-/-IL-2Rα-/- or IFN-γ-/-IL-2Rα-/- to specifically address the precise role of these two cytokines in the natural history of autoimmune cholangitis and colitis. Of note, deletion of IL-17A in IL-2Rα-/- mice led to more severe liver inflammation, but ameliorated colitis. In contrast, there were no significant changes in the immunopathology of double knock-out IFN-γ-/- IL-2Rα-/- mice, compared to single knock-out IL-2Rα-/- mice with respect to cholangitis or colitis. Furthermore, there was a significant increase in pathogenetic CD8+ T cells in the liver of IL-17A-/-IL-2Rα-/- mice. Our data suggest that while IL-17A plays a protective role in autoimmune cholangitis, it has a pro-inflammatory role in inflammatory bowel disease. These data take on particular significance in the potential use of anti-IL-17A therapy in humans with primary biliary cirrhosis.
    PLoS ONE 08/2014; 9(8):e105351. DOI:10.1371/journal.pone.0105351 · 3.23 Impact Factor
  • Source
    • "IL-17 is a pleiotropic cytokine that plays pivotal role in the pro- and anti-inflammatory responses in various tissues and different colitis models [7–10]. Previous studies demonstrated that the development of DSS-induced colitis was enhanced by the administration of an anti-IL-17 neutralizing monoclonal antibody, which suggests that IL-17 plays an anti-inflammatory role in mediating the initiation and progression of inflammation in DSS colitis [9]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Ulcerative colitis is inflammatory conditions of the colon caused by interplay of genetic and environmental factors. Previous studies indicated that the gut microflora may be involved in the colonic inflammation. Bacteroides fragilis (BF) is a Gram-negative anaerobe belonging to the colonic symbiotic. We aimed to investigate the protective role of BF in a colitis model induced in germ-free (GF) mice by dextran sulfate sodium (DSS). GF C57BL/6JNarl mice were colonized with BF for 28 days before acute colitis was induced by DSS. BF colonization significantly increased animal survival by 40%, with less reduction in colon length, and decreased infiltration of inflammatory cells (macrophages and neutrophils) in colon mucosa following challenge with DSS. In addition, BF could enhance the mRNA expression of anti-inflammatory-related cytokine such as interleukin 10 (IL-10) with polymorphism cytokine IL-17 and diminish that of proinflammatory-related tumor necrosis factor α with inducible nitric oxide synthase in the ulcerated colon. Myeloperoxidase activity was also decreased in BF-DSS mice. Taking these together, the BF colonization significantly ameliorated DSS-induced colitis by suppressing the activity of inflammatory-related molecules and inducing the production of anti-inflammatory cytokines. BF may play an important role in maintaining intestinal immune system homeostasis and regulate inflammatory responses.
    BioMed Research International 05/2014; 2014(5):675786. DOI:10.1155/2014/675786 · 1.58 Impact Factor
Show more