Article

Exposure to oral methylphenidate from adolescence through young adulthood produces transient effects on hippocampal-sensitive memory in rats.

Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Cognición, Cerebro y Conducta, Panamá, Panama.
Behavioural brain research (Impact Factor: 3.22). 09/2009; 202(1):50-7. DOI: 10.1016/j.bbr.2009.03.015
Source: PubMed

ABSTRACT Methylphenidate (MPH) is the most commonly prescribed medication used to treat the symptoms associated with attention-deficit hyperactivity disorder (ADHD). The increase in ADHD diagnosis and MPH use has raised concerns regarding the long-term consequences of early exposure to psychostimulants. Animals studies indicate that early developmental MPH treatment produces enduring changes in hippocampal-sensitive tasks, including novel object recognition (NOR) and long-term retention of contextual fear. We administered oral MPH to male Wistar rats at a therapeutically relevant dose (2 or 5 mg/kg) twice daily for 7 weeks beginning on post-natal day (PN) 27 through PN 71 (i.e., periadolescence through young adulthood). Behavioral tests began 18 days following the last MPH administration. MPH (5 mg/kg) produced an increase in the latency to reach criterion for sample object exploration during the first of two NOR tests, but did not produce memory deficits at either dose. MPH (5 mg/kg) enhanced freezing during the 24 h retention test, but did not affect responding at 48 h. Taken together, the results of both tasks suggest that treatment with MPH in a manner that approximates clinical exposure patterns transiently modifies hippocampal-sensitive learning in rats but does not produce cognitive impairments. We suggest that the effects of prolonged exposure to MPH treatment on cognitive processes vary as a function of the duration and pattern of drug administration, as well as task complexity, which may account for differences among studies regarding its long-term behavioral effects. Future preclinical studies examining the effects of early psychostimulant treatment should include different periods of exposure and assessment, as well as clinically relevant doses and routes of drug administration, in order to better understand the impact of pediatric medications on adult cognition.

1 Bookmark
 · 
48 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: National survey data suggest a steady increase in the diagnosis and treatment of mental disorders in children, particularly Attention Deficit/Hyperactivity Disorder (ADHD). As nearly all children diagnosed with ADHD are prescribed stimulant drugs, rationale exists to quantitatively characterize behavioral responses following withdrawal from chronic stimulant dosing. These rodent experiments involved chronic administration of 7.5 mg/kg, s.c. amphetamine to subjects throughout adolescence followed by cognitive tests to gauge learning and performance during the withdrawal stage 7 to 14 days past withdrawal. Tests used a complex Stone 14-unit multiple T-maze, which is a robust paradigm for demonstrating age-related differences in rodent models when behavioral cognitive endpoints are used. Results reveal that amphetamine-treated subjects committed fewer major and retracing errors with increased minor errors and a significantly lower mean completion time. These findings suggest that pharmacotherapy aimed at adolescent-phase treatment of ADHD does not provoke spatial memory deficits at times proximal to drug withdrawal and lends support to amphetamine use in the treatment of ADHD children.
    Addiction Biology 02/2013; · 5.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cognitive dysfunction is a hallmark of chronic psychostimulant misuse. Adolescents may have heightened risk of developing drug-induced deficits because their brains are already undergoing widespread changes in anatomy and function as a normal part of development. To address this hypothesis, we performed two sets of experiments where adolescent and young adult rats were pre-exposed to saline or amphetamine (1 or 3mg/kg) and subsequently tested in a prefrontal cortex (PFC)-sensitive working memory task. A total of ten injections of AMPH or saline (in control rats) were given every other day over the course of 19 days. After rats reached adulthood (> 90 days old), cognitive performance was assessed using operant-based delayed matching-to-position (DMTP) and delayed nonmatching-to-position (DNMTP) tasks. DNMTP was also assessed following challenges with amphetamine (0.1-1.25mg/kg), and ketamine (5.0-10mg/kg). In experiment one, we also measured the locomotor response following the first and tenth pre-exposure to amphetamine and after an amphetamine challenge given at the conclusion of operant testing. Compared to adult-exposed groups, adolescents were less sensitive to the psychomotor effects of amphetamine. However, they were more vulnerable to exposure-induced cognitive impairments. For example, adolescent-exposed rats displayed delay-dependent deficits in accuracy, increased sensitivity to proactive interference, and required more training to reach criterion. Drug challenges produced deficits in DNMTP performance, but these were not dependent on pre-exposure group. These studies demonstrate age of exposure-dependent effects of amphetamine on cognition in a PFC-sensitive task, suggesting a heightened sensitivity of adolescents to amphetamine-induced neuroplasticity.
    Behavioural brain research 01/2013; · 3.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Attention deficit/hyperactivity disorder (ADHD) is a neurobehavioral disorder of cognition. We investigated the effects of treadmill exercise on Purkinje cell and astrocytic reaction in the cerebellum of the ADHD rat. Adult male spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKYR) weighing 210± 10 g were used. The animals were randomly divided into four groups (n= 15): control group, ADHD group, ADHD and methylphenidate (MPH)-treated group, ADHD and treadmill exercise group. The rats in the MPH-treated group as a positive control received 1 mg/kg MPH orally once a day for 28 consecutive days. The rats in the treadmill exercise group were made to run on a treadmill for 30 min once a day for 28 days. Motor coordination and balance were determined by vertical pole test. Immunohistochemistry for the expression of calbindinD-28 and glial fibrillary acidic protein (GFAP) in the cerebellar vermis and Western blot for GFAP, Bax, and Bcl-2 were conducted. In the present results, ADHD significantly decreased balance and the number of calbindin-positive cells, while GFAP expression and Bax/Bcl-2 ratio in the cerebellum were significantly increased in the ADHD group compared to the control group (P< 0.05, respectively). In contrast, treadmill exercise and MPH alleviated the ADHD-induced the decrease of balance and the number of calbindine-positive cells, and the increase of GFAP expression and Bax/Bcl-2 ratio in the cerebellum (P< 0.05, respectively). Therefore, the present results suggested that treadmill exercise might exert ameliorating effect on ADHD through reduction of Purkinje cell loss and astrocytic reaction in the cerebellum.
    Journal of exercise rehabilitation. 02/2014; 10(1):22-30.