Article

CHARMM: the biomolecular simulation program.

Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
Journal of Computational Chemistry (Impact Factor: 3.6). 06/2009; 30(10):1545-614. DOI: 10.1002/jcc.21287
Source: DBLP

ABSTRACT CHARMM (Chemistry at HARvard Molecular Mechanics) is a highly versatile and widely used molecular simulation program. It has been developed over the last three decades with a primary focus on molecules of biological interest, including proteins, peptides, lipids, nucleic acids, carbohydrates, and small molecule ligands, as they occur in solution, crystals, and membrane environments. For the study of such systems, the program provides a large suite of computational tools that include numerous conformational and path sampling methods, free energy estimators, molecular minimization, dynamics, and analysis techniques, and model-building capabilities. The CHARMM program is applicable to problems involving a much broader class of many-particle systems. Calculations with CHARMM can be performed using a number of different energy functions and models, from mixed quantum mechanical-molecular mechanical force fields, to all-atom classical potential energy functions with explicit solvent and various boundary conditions, to implicit solvent and membrane models. The program has been ported to numerous platforms in both serial and parallel architectures. This article provides an overview of the program as it exists today with an emphasis on developments since the publication of the original CHARMM article in 1983.

Full-text

Available from: Bruce Tidor, Apr 18, 2015
1 Follower
 · 
366 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor involved in neurodegenerative and inflammatory disorders. RAGE induces cellular signaling upon binding to a variety of ligands. Evidence suggests that RAGE up-regulation is involved in quinolinate (QUIN)-induced toxicity. We investigated the QUIN-induced toxic events associated with early noxious responses, which might be linked to signaling cascades leading to cell death. The extent of early cellular damage caused by this receptor in the rat striatum was characterized by image processing methods. To document the direct interaction between QUIN and RAGE, we determined the binding constant (Kb) of RAGE (VC1 domain) with QUIN through a fluorescence assay. We modeled possible binding sites of QUIN to the VC1 domain for both rat and human RAGE. QUIN was found to bind at multiple sites to the VC1 dimer, each leading to particular mechanistic scenarios for the signaling evoked by QUIN binding, some of which directly alter RAGE oligomerization. This work contributes to the understanding of the phenomenon of RAGE-QUIN recognition, leading to the modulation of RAGE function.
    PLoS ONE 03/2015; 10(3):e0120221. DOI:10.1371/journal.pone.0120221 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neurotransmitter:Sodium Symporters (NSSs) terminate neurotransmission by Na(+)-dependent reuptake of released neurotransmitters. Previous studies suggested that Na(+)-binding reconfigures dynamically-coupled structural elements in an allosteric interaction network (AIN) responsible for function-related conformational changes, but the intramolecular pathway of this mechanism has remained uncharted. We describe a new approach for the modeling and analysis of intramolecular dynamics in the bacterial NSS homolog LeuT. From microsecond-scale molecular dynamics simulations and cognate experimental verifications in both LeuT and human dopamine transporter (hDAT), we apply the novel method to identify the composition and the dynamic properties of their conserved AIN. In LeuT, two different perturbations disrupting Na(+) binding and transport (i.e., replacing Na(+) with Li(+), or the Y268A mutation at the intracellular gate), affect the AIN in strikingly similar ways. In contrast, other mutations that affect the intracellular gate (i.e., R5A and D369A) do not significantly impair Na(+) cooperativity and transport. Our analysis shows these perturbations to have much lesser effects on the AIN, underscoring the sensitivity of this novel method to the mechanistic nature of the perturbation. Notably, this set of observations holds as well for hDAT where the aligned Y335A, R60A, and D436A mutations also produce different impacts on Na(+) dependence. Thus, the detailed AIN generated from our method is shown to connect Na(+)-binding with global conformational changes that are critical for the transport mechanism. That the AIN between the Na(+) binding sites and the intracellular gate in bacterial LeuT resembles that in eukaryotic hDAT highlights the conservation of allosteric pathways underlying NSS function. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
    Journal of Biological Chemistry 04/2015; DOI:10.1074/jbc.M114.625343 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The polyvalent acidic lipid phosphatidylinositol, 4,5-bisphosphate (PIP2) is important for many cellular functions. It has been suggested that different pools of PIP2 exist in the cytoplasmic leaflet of the plasma membrane, and that such pooling could play a role in the regulation of PIP2. The mechanism of fencing, however, is not understood. This study presents the results of Langevin dynamics simulations of PIP2 to elucidate some of the molecular level considerations that must be applied to models for fencing. For each simulation, a pool of PIP2 (modeled as charged spheres) was placed in containments with boundaries modeled as a single row of rods (steric or electrostatic) or rigid protein filaments. It is shown that even a small gap (20 Å, which is 1.85 times larger than the diameter of a PIP2 sphere) leads to poor steric blocking, and that electrostatic blockage is only effective at very high charge density. Filaments of human septin, yeast septin, and actin also failed to provide adequate blockage when placed on the membrane surface. The two septins do provide high blockage consistent with experiment and with phenomenological considerations of permeability when they are buried 9 Å and 12 Å below the membrane surface, respectively. In contrast, burial does not improve blockage by the "arch-shaped" actin filaments. Free energy estimates using implicit membrane-solvent models indicate that burial of the septins to about 10 Å can be achieved without penetration of charged residues into the hydrophobic region of the membrane. These results imply that a functioning fence assembled from protein filaments must either be buried well below the membrane surface, have more than a single row, or contain additional components that fill small gaps in the filaments.
    BMC Biophysics 11/2014; 7:13. DOI:10.1186/s13628-014-0013-3 · 2.18 Impact Factor