Family history of renal disease severity predicts the mutated gene in ADPKD.

Division of Nephrology and Genomic Medicine, Department of Medicine, University of Toronto and University Health Network, Toronto, Ontario, Canada.
Journal of the American Society of Nephrology (Impact Factor: 9.47). 06/2009; 20(8):1833-8. DOI: 10.1681/ASN.2009020162
Source: PubMed

ABSTRACT Mutations of PKD1 and PKD2 account for 85 and 15% of cases of autosomal dominant polycystic kidney disease (ADPKD), respectively. Clinically, PKD1 is more severe than PKD2, with a median age at ESRD of 53.4 versus 72.7 yr. In this study, we explored whether a family history of renal disease severity predicts the mutated gene in ADPKD. We examined the renal function (estimated GFR and age at ESRD) of 484 affected members from 90 families who had ADPKD and whose underlying genotype was known. We found that the presence of at least one affected family member who developed ESRD at age < or =55 was highly predictive of a PKD1 mutation (positive predictive value 100%; sensitivity 72%). In contrast, the presence of at least one affected family member who continued to have sufficient renal function or developed ESRD at age >70 was highly predictive of a PKD2 mutation (positive predictive value 100%; sensitivity 74%). These data suggest that close attention to the family history of renal disease severity in ADPKD may provide a simple means of predicting the mutated gene, which has prognostic implications.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In patients with autosomal dominant polycystic kidney disease (ADPKD) evaluated for kidney transplantation, issues related to native nephrectomy, cystic liver involvement, screening for intracranial aneurysms and living-related kidney donation deserve special consideration. Prophylactic native nephrectomy is restricted to patients with a history of cyst infection or recurrent haemorrhage or to those in whom space must be made to implant the graft. Patients with liver involvement require pretransplant imaging. Selection of patients for pretransplant screening of intracranial aneurysms should follow the general recommendations for patients with ADPKD. In living related-donor candidates aged <30 years and at-risk of ADPKD, molecular genetic testing should be carried out when ultrasonography and MRI findings are normal or equivocal. After kidney transplantation, patient and graft survival rates are excellent and the volume of native kidneys decreases. However, liver cysts continue to grow and treatment with a somatostatin analogue should be considered in patients with massive cyst involvement. Cerebrovascular events have a marginal effect on post-transplant morbidity and mortality. An increased risk of new-onset diabetes mellitus and nonmelanoma skin cancers has been reported, but several studies have challenged these findings. Finally, no data currently support the preferential use of mammalian target of rapamycin inhibitors as immunosuppressive agents in transplant recipients with ADPKD.
    Nature Reviews Nephrology 06/2014; 10(8). DOI:10.1038/nrneph.2014.104 · 8.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The average weight of a kidney is approximately 135 gm, measuring on average 10 × 6 × 4 cm. In hereditary conditions, autosomal dominant and autosomal recessive polycystic kidney disease, the shape, size, and the weight can be significantly abnormal, causing progressive renal failure, often necessitating dialysis or renal transplant for survival. We report a case of adult polycystic kidney disease in a 50-year-old female without a family history, who died of complications of the disease which included accelerated hypertension, and renal and cardiac failure.
    01/2014; 2014:727580. DOI:10.1155/2014/727580
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disorder. It is caused by mutations in the PKD1 and PKD2 genes, and manifests as progressive cyst growth and renal enlargement, resulting in renal failure. Although there have been a few studies on the frequency and spectrum of mutations in PKD1 and PKD2 in Korean patients with ADPKD, only exons 36¿46, excluding the duplicated region, were analyzed, which makes it difficult to determine accurate mutation frequencies and mutation spectra.Methods We performed sequence analysis of 20 consecutive unrelated ADPKD patients using long-range polymerase chain reaction (PCR) to avoid pseudogene amplification, followed by exon-specific PCR and sequencing of the all exons of these two genes. Multiplex ligation-dependent probe amplification was performed in patients in whom pathogenic mutations in PKD1 or PKD2 were not identified by LR-PCR and direct sequencing to detect large genomic rearrangements.ResultsAll patients met the diagnostic criteria of ADPKD, and pathogenic mutations were found in 18 patients (90.0%), comprising 15 mutations in PKD1 and three in PKD2. Among 10 novel mutations, eight mutations were found in the PKD1 gene while two mutations were found in the PKD2 gene. Eight of 14 PKD1 mutations (57.1%) were located in the duplicated region.Conclusions This study expands the spectra of mutations in the PKD1 and PKD2 genes and shows that the mutation frequencies of these genes in Korean ADPKD patients are similar to those reported in other ethnicities. Sequence analysis, including analysis of the duplicated region, is essential for molecular diagnosis of ADPKD.
    BMC Medical Genetics 12/2014; 15(1):129. DOI:10.1186/s12881-014-0129-y · 2.45 Impact Factor


Available from
May 27, 2014