Article

Risk for nicotine dependence and lung cancer is conferred by mRNA expression levels and amino acid change in CHRNA5.

Department of Psychiatry, Washington University, 660 South Euclid, PO Box 8134, St Louis, MO 63110, USA.
Human Molecular Genetics (Impact Factor: 6.68). 06/2009; 18(16):3125-35. DOI: 10.1093/hmg/ddp231
Source: PubMed

ABSTRACT Nicotine dependence risk and lung cancer risk are associated with variants in a region of chromosome 15 encompassing genes encoding the nicotinic receptor subunits CHRNA5, CHRNA3 and CHRNB4. To identify potential biological mechanisms that underlie this risk, we tested for cis-acting eQTLs for CHRNA5, CHRNA3 and CHRNB4 in human brain. Using gene expression and disease association studies, we provide evidence that both nicotine-dependence risk and lung cancer risk are influenced by functional variation in CHRNA5. We demonstrated that the risk allele of rs16969968 primarily occurs on the low mRNA expression allele of CHRNA5. The non-risk allele at rs16969968 occurs on both high and low expression alleles tagged by rs588765 within CHRNA5. When the non-risk allele occurs on the background of low mRNA expression of CHRNA5, the risk for nicotine dependence and lung cancer is significantly lower compared to those with the higher mRNA expression. Together, these variants identify three levels of risk associated with CHRNA5. We conclude that there are at least two distinct mechanisms conferring risk for nicotine dependence and lung cancer: altered receptor function caused by a D398N amino acid variant in CHRNA5 (rs16969968) and variability in CHRNA5 mRNA expression.

0 Bookmarks
 · 
161 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic cigarette use has been consistently associated with differences in the neuroanatomy of smokers relative to nonsmokers in case-control studies. However, the etiology underlying the relationships between brain structure and cigarette use is unclear. A community-based sample of male twin pairs ages 51-59 (110 monozygotic pairs, 92 dizygotic pairs) was used to determine the extent to which there are common genetic and environmental influences between brain structure and average lifetime cigarette use. Brain structure was measured by high-resolution structural magnetic resonance imaging, from which subcortical volume and cortical volume, thickness and surface area were derived. Bivariate genetic models were fitted between these measures and average lifetime cigarette use measured as cigarette pack-years. Widespread, negative phenotypic correlations were detected between cigarette pack-years and several cortical as well as subcortical structures. Shared genetic and unique environmental factors contributed to the phenotypic correlations shared between cigarette pack-years and subcortical volume as well as cortical volume and surface area. Brain structures involved in many of the correlations were previously reported to play a role in specific aspects of networks of smoking-related behaviors. These results provide evidence for conducting future research on the etiology of smoking-related behaviors using measures of brain morphology.
    Behavior Genetics 02/2015; · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The 15q25.1 lung cancer susceptibility locus, containing CHRNA5, could modify lung cancer susceptibility and multiple smoking related phenotypes. However, no studies have investigated the association between CHRNA5 rs3841324, which has been proven to have the highest association with CHRNA5 mRNA expression, and the risk of other smoking-associated cancers, except lung cancer. In the current study we examined the association between rs3841324 and susceptibility to smoking-associated nasopharyngeal carcinoma (NPC).
    PLoS ONE 10/2014; 9(10):e109036. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cigarette smoking is highly addictive, and modern genetic research has identified robust genetic influences on nicotine dependence. An important step in translating these genetic findings is to identify the genetic factors affecting smoking cessation in order to enhance current smoking cessation treatments. We review the significance of variants in the nicotinic receptor gene cluster (CHRNA5-CHRNA3-CHRNB4) in the prediction of smoking quantity, smoking cessation, and response to cessation medication in multiple studies of smoking cessation. Three common haplotypes (low-risk, intermediate-risk, and high-risk) in the CHRNA5-CHRNA3-CHRNB4 region are defined by rs16969968 and rs680244. The genetic variants in the CHRNA5-CHRNA3-CHRNB4 region that predict nicotine dependence also predict a later age of smoking cessation in a community-based sample. In a smoking cessation trial, these variants predict abstinence at end of treatment in individuals receiving placebo medication, but not amongst individuals receiving active medication. Pharmacological treatments moderate the genetic risk in affecting cessation success. These pharmacogenetic interactions have been reproduced by a recent meta-analysis of smoking cessation trials. The number needed to treat (NNT) is 4 for smokers with the high-risk haplotype, 7 for smokers with the intermediate-risk haplotype, and >1000 for smokers with the low-risk haplotype. The wide variation in NNT between smokers with different haplotypes supports the notion that personalized smoking cessation intervention based upon genotype could meaningfully increase the efficiency of such treatment. In summary, variants in the CHRNA5-CHRNA3-CHRNB4 region identify individuals at increased risk of cessation failure, and this increased risk can be ameliorated by cessation pharmacotherapy.
    Journal of Food and Drug Analysis 12/2013; 21(4):S87-S90. · 0.40 Impact Factor

Full-text (2 Sources)

Download
46 Downloads
Available from
May 26, 2014