The cyclooxygenase-2 inhibitor nimesulide, a nonsteroidal analgesic, decreases the effect of radiation therapy in head-and-neck cancer cells.

Department of Cranio-, Maxillofacial and Oral Surgery, Medical University of Vienna, Vienna, Austria.
Strahlentherapie und Onkologie (Impact Factor: 4.16). 06/2009; 185(5):310-7. DOI: 10.1007/s00066-009-1929-4
Source: PubMed

ABSTRACT No data are available on the effects of the cyclooxygenase-2 (COX-2) inhibitor nimesulide in combination with irradiation on the survival of head-and-neck carcinoma cells.
Two head-and-neck carcinoma cell lines (SCC9 and SCC25) were treated with nimesulide (50-600 microM) and irradiated concomitantly or sequentially. Early effects on cell survival were investigated by counting cell numbers, long-term effects by colony-forming assays. Cell-cycle effects were analyzed 24-72 h after treatment with nimesulide by flow cytometry.
Unexpectedly, nimesulide solely inhibited cell proliferation without affecting colony-forming ability. In addition, no evidence for a radiosensitizing effect of nimesulide in short-term assays was seen. Nimesulide alone had no effect on clonogenic survival alone or in combination with radiation.
Nimesulide differentially affects cell proliferation and clonogenic survival and may decrease the efficacy of radiotherapy. Short-term assays to assess tumor growth may not correctly predict the clinically relevant long-term effect of COX-2 inhibitors.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Inhibition of mammalian target of rapamycin (mTOR) represents an attractive target for anticancer therapy, but its role in suppression of colorectal cancer (CRC) cell growth by cyclooxygenase-2 (COX-2) inhibitors is unclear. Here, we analyzed the effect of indomethacin (Indo, a nonselective COX-2 inhibitor) and nimesulide (Nim, a selective COX-2 inhibitor) on mTOR signaling in CRC cells in vitro and in vivo to determine the dependence of this effect on COX-2. Human CRC cell lines with varying COX-2 expression levels were treated with Indo and Nim. Western blot test was performed to detect mTOR-related components (mTOR, p70s6 K, and 4EBP1), and cell viability, cell cycle, and apoptosis were assessed. HCT116 and SW1116 cells were injected into athymic nude mice to establish a CRC xenograft model. After treatment with Nim, tumor volume, mTOR signaling, and apoptosis were evaluated in this model. HT29 and SW1116 cells were also treated with Nim after transfection with COX-2-specific small interfering RNA (siRNA) to assess dependence of COX-2 on mTOR signaling under drug treatment. Both Indo and Nim reduced mTOR signaling activity in CRC cells that differ in their COX-2 expression in vitro and in vivo. Additionally, Indo and Nim could reduce the mTOR signaling activity after COX-2 silencing in CRC cells. mTOR signaling is involved in Indo- and Nim-mediated suppression of CRC growth via a COX-2 independent pathway. This study unveils a novel mechanism through which COX-2 inhibitors exerts their anticancer effects and further emphasizes targeting mTOR signaling in anticancer therapy.
    Annals of Surgical Oncology 02/2011; 18(2):580-8. · 4.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Evidence suggests overexpression of COX-2 and its role in many human cancers, including lung. However, the regulatory mechanism underlying COX-2 overexpression in lung cancer is not fully understood. We herein investigated whether COX-2 is overexpressed in human airway cancer cell lines, including A549 (lung), Hep-2 (bronchial), and NCI-H292 (alveolar). When grown in cell culture medium containing 10% FBS (serum), of note, there was strong and transient induction of COX-2 protein and mRNA in NCI-H292 cells, but little or low COX-2 expression is seen in A549 or Hep-2 cells. Interestingly, strong and sustained activities of ERK-1/2, JNK-1/2, p38 MAPK, and PKB were also shown in NCI-H292 cells grown in presence of serum. Profoundly, results of pharmacological inhibition studies demonstrated that the serum-dependent COX-2 up-regulation in NCI-H292 cells is attributed to not only the p38 MAPK-, PI3K/PKB-, and ERK-1/2-mediated COX-2 transcriptional up-regulation but also the p38 MAPK- and ERK-1/2-mediated post-transcriptional COX-2 mRNA stabilization. Of further note, it was shown that the ERK-1/2 and PI3K/PKB (but not COX-2, p38 MAPK, and JNK-1/2) activities are necessary for growth of NCI-H292 cells. These findings collectively demonstrate for the first time that COX-2 expression is transiently up-regulated by serum addition in NCI-H292 cells and the serum-induced COX-2 expression is closely linked to the p38 MAPK-, ERK-1/2-, and PI3K/PKB-mediated COX-2 transcriptional and post-transcriptional up-regulation.
    Journal of Cellular Biochemistry 06/2011; 112(10):3015-24. · 3.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study was done to evaluate the association of cyclooxygenase 2 (COX-2) and brain fatty acid binding protein (BFABP) with tumor grade and outcome of grades I-II meningiomas treated with radiotherapy. From 1996 to 2008, 40 patients with intracranial grades I-II meningiomas were treated with radiotherapy. Immunohistochemical staining for COX-2 and BFABP were performed on formalin-fixed paraffin-embedded tissues. COX-2 expression was significantly associated with BFABP status and both COX-2 (P < 0.01) and BFABP (P = 0.01) expression were stronger in the grade II meningiomas than in grade I tumors. Among the clinicopathologic factors, age and COX-2 status were prognostic in progression-free survival. Patients with moderate or strong COX-2 expression had worse outcome than those with negative or weak COX-2 expression (P = 0.03) after controlling for potential confounders. Our results suggest that the molecular biomarker COX-2 has prognostic significance in intracranial grades I-II meningiomas following radiotherapy.
    Neuropathology 05/2014; · 1.91 Impact Factor