Article

Origin licensing and p53 status regulate Cdk2 activity during G(1).

Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
Cell cycle (Georgetown, Tex.) (Impact Factor: 5.24). 07/2009; 8(12):1952-63. DOI: 10.4161/cc.8.12.8811
Source: PubMed

ABSTRACT Origins of DNA replication are licensed through the assembly of a chromatin-bound prereplication complex. Multiple regulatory mechanisms block new prereplication complex assembly after the G(1)/S transition to prevent rereplication. The strict inhibition of licensing after the G(1)/S transition means that all origins used in S phase must have been licensed in the preceding G(1). Nevertheless mechanisms that coordinate S phase entry with the completion of origin licensing are still poorly understood. We demonstrate that depletion of either of two essential licensing factors, Cdc6 or Cdt1, in normal human fibroblasts induces a G(1) arrest accompanied by inhibition of cyclin E/Cdk2 activity and hypophosphorylation of Rb. The Cdk2 inhibition is attributed to a reduction in the essential activating phosphorylation of T160 and an associated delay in Cdk2 nuclear accumulation. In contrast, licensing inhibition in the HeLa or U2OS cancer cell lines failed to regulate Cdk2 or Rb phosphorylation, and these cells died by apoptosis. Co-depletion of Cdc6 and p53 in normal cells restored Cdk2 activation and Rb phosphorylation, permitting them to enter S phase with a reduced rate of replication and also to accumulate markers of DNA damage. These results demonstrate dependence on origin licensing for multiple events required for G(1) progression, and suggest a mechanism to prevent premature S phase entry that functions in normal cells but not in p53-deficient cells.

0 Bookmarks
 · 
75 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA replication must be tightly regulated to ensure that the genome is accurately duplicated during each cell cycle. When these regulatory mechanisms fail, replicative stress and DNA damage ensue. Activated oncogenes promote replicative stress, inducing a DNA damage response (DDR) early in tumorigenesis. Senescence or apoptosis result, forming a barrier against tumour progression. This may provide a selective pressure for acquisition of mutations in the DDR pathway during tumorigenesis. Despite its potential importance in early cancer development, the precise nature of oncogene-induced replicative stress remains poorly understood. Here, we review our current understanding of replication initiation and its regulation, describe mechanisms by which activated oncogenes might interfere with these processes and discuss how replicative stress might contribute to the genomic instability seen in cancers.
    Current Biology 05/2014; 24(10):R435-R444. · 9.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability of a eukaryotic cell to precisely and accurately replicate its DNA is crucial to maintain genome stability. Here we describe our current understanding of the process by which origins are licensed for DNA replication and review recent work suggesting that fork stalling has exerted a strong selective pressure on the positioning of licensed origins. In light of this, we discuss the complex and disparate phenotypes observed in mouse models and humans patients that arise due to defects in replication licensing proteins.
    DNA repair 04/2014; · 4.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have shown that dormant licensed replication origins can be exploited to enhance recovery from replication stress. Since tumour cells express high levels of origin licensing proteins, we examined whether depletion of such factors might specifically sensitise tumour versus non-tumour cells. Consistent with previous findings, we observed that three tumour-derived cell lines overexpress ORC1, a licensing component, compared to four non-tumour cell lines and that a greater level of ORC1 was required to maintain viability in the tumour cells. We determined siRNA-mediated knockdown conditions for each line that maximally reduced ORC1 but did not impact upon viability, which we considered would optimally deplete dormant origins. ORC1 depletion hypersensitised the tumour-derived cells to hydroxyurea (HU) and H202 but did not affect the sensitivity of the non-tumour lines. Similar results were observed following depletion of ORC6 or CDC6. Further, co-depletion of p53 and ORC1 modestly impaired viability of 1BR3hTERT non-tumour fibroblasts and more dramatically caused hypersensitivity to HU. Finally, overexpression of the c-Myc oncogene combined with ORC1 depletion in non-tumour BJhTERT cells diminished viability. Collectively, these findings suggest that tumour cells may have a reliance on origin licensing capacity, suggesting that licensing factors could represent a target for drug-based cancer therapy.
    Molecular Cancer Research 01/2013; · 4.35 Impact Factor

Full-text

Download
1 Download
Available from