Article

Rheumatoid cachexia: a complication of rheumatoid arthritis moves into the 21st century

Immunology R&D, Biogen Idec, Inc,, Cambridge, MA 02142, USA. .
Arthritis research & therapy (Impact Factor: 4.12). 04/2009; 11(2):108. DOI: 10.1186/ar2658
Source: PubMed

ABSTRACT Rheumatoid cachexia, loss of muscle mass and strength and concomitant increase in fat mass, is very common in patients with rheumatoid arthritis (RA). Despite great advances in the treatment of RA, it appears that rheumatoid cachexia persists even after joint inflammation improves. Rheumatoid cachexia may be an important risk factor for cardiovascular disease and excess mortality in RA. In this issue of Arthritis Research & Therapy, Elkan and colleagues demonstrate a link between rheumatoid cachexia and metabolic syndrome, further reinforcing the need for therapy directed beyond inflammation and at the metabolic consequences of RA.

Full-text

Available from: Ronenn Roubenoff, Jun 12, 2015
0 Followers
 · 
152 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insulin resistance is an essential feature of the metabolic syndrome that has been linked to rheumatoid arthritis (RA). Understanding how inflammation arising in one tissue affects the physiology and pathology of other organs remains an unanswered question with therapeutic implications for chronic conditions including obesity, diabetes mellitus, atherosclerosis, and RA. Adipokines may play a role in the development of atherogenesis in patients with RA. Biologic therapies, such as TNF-α antagonists, that block proinflammatory cytokines have beneficial effects on the insulin resistance that is often observed in patients with RA.
    Mediators of Inflammation 01/2013; 2013:710928. DOI:10.1155/2013/710928 · 2.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Substantial progress has been made in the medical management of rheumatoid arthritis (RA) over the past decade with the introduction of biologic therapies, including anti-tumour necrosis factor alpha (anti-TNFα) therapy medications. However, individuals with RA taking anti-TNFα medication continue to experience physical, psychological and functional consequences, which could potentially benefit from rehabilitation. There is evidence that therapeutic exercise should be included as an intervention for people with RA, but to date there is little evidence of the benefits of therapeutic exercise for people with RA on anti-TNFα therapy medication. A protocol for a multicentre randomised controlled three-armed study which aims to examine the effect of dynamic group exercise therapy on land or in water for people with RA taking anti-TNFα therapy medication is described. Six hundred and eighteen individuals with RA, on anti-TNFα therapy medication, will be randomised into one of 3 groups: a land-based exercise group; a water-based exercise group or a control group. The land and water-based groups will exercise for one hour, twice a week for eight weeks. The control group will receive no intervention and will be asked not to alter their exercise habits for the duration of the study. The primary outcome measure, the Stanford Health Assessment Questionnaire Disability Index (HAQ-DI) which measures functional ability, and secondary measures of pain, fatigue and quality of life, will be assessed at baseline, eight and 24 weeks by an independent assessor unaware of group allocation. Changes in outcome from 0 to 8 weeks and 0 to 24 weeks in the 'land-based exercise group versus control group' and the 'water-based exercise group versus control group' will be examined. Analysis will be conducted on an intention to treat basis. This trial will evaluate the effectiveness of group exercise therapy on land or in water, for people with RA taking anti-TNFα therapy medication. If these exercise groups are found to be beneficial, they could be conducted in local community facilities thus making these forms of exercise more easily accessible for individuals and potentially reduce the burden on health services. This trial is registered with ClinicalTrials.gov (a service of the United States National Institutes of Health) identifier: NCT00855322.
    BMC Musculoskeletal Disorders 01/2011; 12:11. DOI:10.1186/1471-2474-12-11 · 1.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic inflammation induces skeletal muscle wasting and cachexia. In arthritic rats, fenofibrate, a peroxisome proliferator-activated receptor α (PPARα (PPARA)) agonist, reduces wasting of gastrocnemius, a predominantly glycolytic muscle, by decreasing atrogenes and myostatin. Considering that fenofibrate increases fatty acid oxidation, the aim of this study was to elucidate whether fenofibrate is able to prevent the effect of arthritis on serum adipokines and on soleus, a type I muscle in which oxidative metabolism is the dominant source of energy. Arthritis was induced by injection of Freund's adjuvant. Four days after the injection, control and arthritic rats were gavaged daily with fenofibrate (300 mg/kg bw) or vehicle over 12 days. Arthritis decreased serum leptin, adiponectin, and insulin (P<0.01) but not resistin levels. In arthritic rats, fenofibrate administration increased serum concentrations of leptin and adiponectin. Arthritis decreased soleus weight, cross-sectional area, fiber size, and its Ppar α mRNA expression. In arthritic rats, fenofibrate increased soleus weight, fiber size, and Ppar α expression and prevented the increase in Murf1 mRNA. Fenofibrate decreased myostatin, whereas it increased MyoD (Myod1) and myogenin expressions in the soleus of control and arthritic rats. These data suggest that in oxidative muscle, fenofibrate treatment is able to prevent arthritis-induced muscle wasting by decreasing Murf1 and myostatin expression and also by increasing the myogenic regulatory factors, MyoD and myogenin. Taking into account the beneficial action of adiponectin on muscle wasting and the correlation between adiponectin and soleus mass, part of the anticachectic action of fenofibrate may be mediated through stimulation of adiponectin secretion.
    07/2012; 1(1):1-12. DOI:10.1530/EC-12-0003