Activation of AMPK inhibits inflammation in MRL/lpr mouse mesangial cells

Virginia College of Osteopathic Medicine, Blacksburg, VA 24060, USA.
Clinical & Experimental Immunology (Impact Factor: 3.04). 07/2009; 156(3):542-51. DOI: 10.1111/j.1365-2249.2009.03924.x
Source: PubMed


Recent reports show that 5-amino-4-imidazole carboxamide riboside (AICAR), a pharmacological activator of AMP-activated protein kinase (AMPK), inhibits the lipopolysaccharide (LPS)-induced production of proinflammatory cytokines. MRL/MPJ-Fas(lpr) (MRL/lpr) mice show an intrinsic decreased threshold for the production of inflammatory mediators when stimulated. In our current studies, we sought to determine if AMPK activation would inhibit inflammatory mediator production in stimulated kidney mesangial cells. Cultured mesangial cells from MRL/lpr mice were treated with AICAR and stimulated with LPS/interferon (IFN)-gamma. AICAR decreased dose-dependently inducible nitric oxide synthase (iNOS), cyclooxygenase-2 and interleukin-6 production in LPS/IFN-gamma-stimulated mesangial cells. Mechanistically, AICAR inhibited the LPS/IFN-gamma-stimulated PI3K/Akt signalling inflammatory cascade but did not affect LPS/IFN-gamma-mediated inhibitory kappa B phosphorylation or nuclear factor (NF)-kappaB (p65) nuclear translocation. Treatment with the adenosine kinase inhibitor 5'-iodotubercidin blocked the ability of AICAR to activate AMPK and prevented AICAR from inhibiting the LPS/IFN-gamma-stimulated PI3K/Akt pathway and attenuating iNOS expression. Taken together, these observations suggest that AICAR inhibits LPS/IFN-gamma-induced Akt phosphorylation through AMPK activation and may serve as a potential therapeutic target in inflammatory diseases.

Download full-text


Available from: Sarah Davis,
  • Source
    • "During SLE, increased nuclear translocation of NF-κB leads to increased iNOS and IL-6 production and a pro-inflammatory environment in the mesangium [43]. Our results showed that nuclear levels increased in a time-dependent manner from 0 to 60 mins; however, treatment with ACY-738 reduced nuclear levels of NF-κB in cultured mesangial cells (Fig. 5C). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Prior studies have shown that pan-HDAC inhibition can decrease disease in lupus mice; however, the mechanisms(s) remain to be elucidated. MRL/MpJ-Fas(lpr) (MRL/lpr) mice develop a lupus-like disease characterized by anti-dsDNA production, lymphoproliferation, and immune complex-mediated glomerulonephritis. Early- and late-disease (12 and 20weeks-of-age respectively) female MRL/lpr mice were compared to age-matched, healthy C57BL/6 mice for HDAC expression and activity in bone marrow (BM) B cells, splenic B and T cells, and glomerular cells. We found that HDAC6 was significantly overexpressed in B cells, splenic T cells and glomerular cells, whereas HDAC9 expression was significantly increased in splenic T cells, BM B cells and glomerular cells. Due to the overexpression of HDAC6, we tested whether treatment with a selective HDAC6 inhibitor (ACY-738) or a pan-HDAC inhibitor (TsA) would decrease HDAC activity. ACY-738 significantly reduced cytoplasmic HDAC activity whereas TsA significantly decreased both nuclear and cytoplasmic HDAC activity. In vitro studies in mesangial cells showed that ACY-738 increased α-tubulin and Hsp90 acetylation resulting in decreased nuclear activation of NF-κB. Treatment of pre-B cells with ACY-738 decreased the Bcl-2:Bax ratio leading to a pro-apoptotic environment. These results suggest that increased HDAC6 expression and activity contribute to SLE pathogenesis, and isoform-selective HDAC inhibitors may prove beneficial in the treatment of SLE by acetylating key signaling and transcription factors in inflammation and cell activation.
    International Immunopharmacology 10/2015; DOI:10.1016/j.intimp.2015.10.006 · 2.47 Impact Factor
  • Source
    • "Once switched on, AMPK activates catabolic pathways that generate ATP and inhibits biosynthetic cell-cycle progression. In addition to balancing cellular energy, it is likely that AMPK also acts to limit inflammation.29–34 Metformin, an AMPK agonist, could reduce the systemic inflammation by lowering the level of C-reactive protein and IL-6.35 "
    [Show abstract] [Hide abstract]
    ABSTRACT: Genistein, an isoflavone derivative found in soy, is known as a promising treatment for rheumatoid arthritis (RA). However, the detailed molecular mechanism of genistein in suppression of proinflammatory cytokine production remains ambiguous. The aim of this work was to evaluate the signal pathway by which genistein modulates inflammatory cytokine expression. MH7A cells were stimulated with tumor necrosis factor (TNF)-α and incubated with genistein, and interleukin (IL)-1β, IL-6, and IL-8 production was measured by enzyme-linked immunosorbent assay. Nuclear translocation of nuclear factor (NF)-κB was measured by a confocal fluorescence microscopy. The intracellular accumulation of reactive oxygen species (ROS) was monitored using the fluorescent probe 5-6-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate. Signal-transduction protein expression was measured by Western blot. Genistein decreased the secretion of IL-1β, IL-6, and IL-8 from TNF-α-stimulated MH7A cells in a dose-dependent manner. Genistein prevented TNF-α-induced NF-κB translocation as well as phosphorylation of IκB kinase-α/β and IκBα, and also suppressed TNF-α-induced AMPK inhibition. The production of IL-1β, IL-6, and IL-8 induced by TNF-α was decreased by the phosphatidylinositol-3 kinase inhibitor LY294002, suggesting that inhibition of Akt activation might inhibit IL-1β, IL-6, and IL-8 production induced by TNF-α. In addition, we also found that pretreatment with the adenosine monophosphate-activated protein kinase (AMPK) agonist 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside obviously inhibited TNF-α-induced proinflammatory cytokine production. These observations suggest that the inhibitory effect of genistein on TNF-α-induced proinflammatory cytokine production is dependent on AMPK activation. These findings indicate that genistein suppressed TNF-α-induced inflammation by inhibiting the ROS/Akt/NF-κB pathway and promoting AMPK activation in MH7A cells.
    Drug Design, Development and Therapy 03/2014; 8:315-23. DOI:10.2147/DDDT.S52354 · 3.03 Impact Factor
  • Source
    • "Both genetic and pharmacological blocking of AMPK resulted in an enhanced proinflammatory response, whereas AMPK activation decreases the secretion of proinflammatory factors by macrophages in vitro (Jeong et al., 2009; Peairs et al., 2009; Sag et al., 2008; Zhao et al., 2008; Giri et al., 2004). In vivo, the administration of 5-amino-1-b-D-ribofuranosyl-imidazole-4-car- boxamide (AICAR), a pharmacological AMPK activator, attenuates LPS-induced acute lung injury (Zhao et al., 2008), whereas its inhibition leads to the opposite effect (Xing et al., 2013). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Macrophages control the resolution of inflammation through the transition from a proinflammatory (M1) to an anti-inflammatory (M2) phenotype. Here, we present evidence for a role of AMPKα1, a master regulator of energy homeostasis, in macrophage skewing that occurs during skeletal muscle regeneration. Muscle regeneration was impaired in AMPKα1(-/-) mice. In vivo loss-of-function (LysM-Cre;AMPKα1(fl/fl) mouse) and rescue (bone marrow transplantation) experiments showed that macrophagic AMPKα1 was required for muscle regeneration. Cell-based experiments revealed that AMPKα1(-/-) macrophages did not fully acquire the phenotype or the functions of M2 cells. In vivo, AMPKα1(-/-) leukocytes did not acquire the expression of M2 markers during muscle regeneration. Skewing from M1 toward M2 phenotype upon phagocytosis of necrotic and apoptotic cells was impaired in AMPKα1(-/-) macrophages and when AMPK activation was prevented by the inhibition of its upstream activator, CaMKKβ. In conclusion, AMPKα1 is crucial for phagocytosis-induced macrophage skewing from a pro- to anti-inflammatory phenotype at the time of resolution of inflammation.
    Cell metabolism 08/2013; 18(2):251-64. DOI:10.1016/j.cmet.2013.06.017 · 17.57 Impact Factor
Show more