Article

Effects of a cosmetic 'anti-ageing' product improves photoaged skin [corrected].

Dermatological Sciences Research Group, School of Translational Medicine, Faculty of Medical and Human Sciences, The University of Manchester, Oxford Road, Manchester, UK.
British Journal of Dermatology (Impact Factor: 4.1). 05/2009; 161(2):419-26. DOI: 10.1111/j.1365-2133.2009.09216.x
Source: PubMed

ABSTRACT Very few over-the-counter cosmetic 'anti-ageing' products have been subjected to a rigorous double-blind, vehicle-controlled trial of efficacy. Previously we have shown that application of a cosmetic 'anti-ageing' product to photoaged skin under occlusion for 12 days can stimulate the deposition of fibrillin-1. This observation infers potential to repair and perhaps clinically improve photoaged skin.
We examined another similar over-the-counter cosmetic 'anti-ageing' product using both the patch test assay and a 6-month double-blind, randomized controlled trial (RCT), with a further 6-month open phase to assess clinical efficacy in photoaged skin.
For the patch test, commercially [corrected] available test product and its vehicle were applied occluded for 12-days to photoaged forearm skin (n = 10) prior to biopsy and immunohistochemical assessment of fibrillin-1; all-transretinoic acid (RA) [corrected] was used as a positive control. Sixty photoaged subjects were recruited to the RCT (test product, n = 30 vs. vehicle, n = 30; once daily for 6-months; face & hands) [corrected] with clinical assessments performed at recruitment and following 1-, 3- & 6-months of use [corrected]. Twenty-eight subjects had skin biopsies (dorsal wrist) at baseline and at 6 months of treatment for immunohistochemical assessment of fibrillin-1 (test product, n = 15; vehicle, n = 13). All subjects [corrected] received test product for a further 6-months. Final clinical assessments were performed at the end of this open period; 27 subjects received test product for 12-months [corrected].
In the 12-day patch test assay, we observed significant immunohistological deposition of fibrillin-1 in skin treated by test product and RA as compared to untreated baseline (P = 0.005 and 0.015 respectively). In the clinical RCT, at 6 months, compared to baseline assessment, 43% of subjects on test product had an improvement in facial wrinkles (P = 0.013), whereas only 22% of subjects using vehicle had clinical improvement (P = ns). Between group comparison of test product and vehicle was non-significant (P = 0.10). After 12 months, there was a significant benefit of test product over that projected for vehicle (70% vs. 33% of subjects improving; combined Wilcoxon rank tests, P = 0.026). There was significant deposition of fibrillin-1 in skin treated for 6 months with test product (mean +/- SE; vehicle, 1.84 +/- 0.23; test product, 2.57 +/- 0.19; P = 0.019).
An over-the-counter cosmetic 'anti-ageing' product demonstrated clear benefit over vehicle in fibrillin-1 deposition over a 6-month trial period. There was a corresponding but non-significant trend towards clinical improvement in facial wrinkles. Clinical improvements in the treated group were increased after a further 6-months of use. This study demonstrates that a cosmetic may improve the appearance of wrinkles and further supports the use of fibrillin-1 as a robust biomarker for repair of photoaged dermis.

3 Followers
 · 
305 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our increased knowledge of normal skin physiology has ushered in a subtle revolution in cosmetic science. Originally designed as preparations to enhance personal appearance by direct application on to the skin, cosmetics have now taken on a new role in dermatology, through the support of the management of many skin disorders. This evolving role of cosmetics in skin care is primarily due to scientific and technological advancements that have changed our understanding of normal skin physiology and how cosmetics modify its appearance both physically and biologically. The vast array of techniques currently available to investigate skin responsivity to multiple stimuli has brought about a new era in cosmetic and dermocosmetic development based on a robust understanding of skin physiology and its varied responses to commonly encountered environmental insults. Most cosmetic research is undertaken on reconstructed skin models crucial in dermatological research, given the strict ban imposed by the European Union on animal testing. In addition, the design and conduct of trials evaluating cosmetics now follow rules comparable to those used in the development and evaluation of pharmaceutical products. Cosmetic research should now aim to ensure all trials adhere to strictly reproducible and scientifically sound methodologies. The objective of this review is to provide an overview of the multidisciplinary scientific approach used in formulating dermocosmetics, and to examine the major advances in dermocosmetic development and assessment, the safety and regulatory guidelines governing their production and the exciting future outlook for these dermocosmetic processes following good practice rules.
    Journal of the European Academy of Dermatology and Venereology 03/2014; 28(11). DOI:10.1111/jdv.12497 · 3.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biomarkers and Ageing 25 February 2014, London, UK This conference was organized by Euroscicon and was part of the 2014 Ageing Summit. The central theme was biomarkers and aging including current research on biomarkers at the genomics and proteomics level. The informal atmosphere of the conference promoted interaction and networking opportunities between key leaders from industry, academic and clinics. Presentations as well as the discussion panel session brought opportunities to widely discuss the relevance of biomarkers as signatures for human aging or age-related diseases. The meeting highlighted the importance of genomics and regulatory elements in aging, their probable role in successful aging and their potential interest for future antiaging approaches. The meeting was chaired by David Melzer and Lorna Harries (University of Exeter, UK).
    Biomarkers in Medicine 06/2014; 8(5):621-3. DOI:10.2217/bmm.14.40 · 2.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Loss of mechanical tension appears to be the major factor underlying decreased collagen synthesis in aged skin. Numerous in vitro studies have shown the impact of mechanical forces on fibroblasts through mechanotransduction, which consists of the conversion of mechanical signals to biochemical responses. Such responses are characterized by the modulation of gene expression coding not only for extracellular matrix components (collagens, elastin, etc.) but also for degradation enzymes (matrix metalloproteinases [MMPs]) and their inhibitors (tissue inhibitors of metalloproteinases [TIMPs]). A new device providing a mechanical stimulation of the cutaneous and subcutaneous tissue has been used in a simple, blinded, controlled, and randomized study. MATERIALS AND METHODS: Thirty subjects (aged between 35 years and 50 years), with clinical signs of skin sagging, were randomly assigned to have a treatment on hemiface. After a total of 24 sessions with Mécano-Stimulation™, biopsies were performed on the treated side and control area for in vitro analysis (dosage of hyaluronic acid, elastin, type I collagen, MMP9; equivalent dermis retraction; GlaSbox(®); n=10) and electron microscopy (n=10). Furthermore, before and after the treatment, clinical evaluations and self-assessment questionnaire were done. RESULTS: In vitro analysis showed increases in hyaluronic acid, elastin, type I collagen, and MMP9 content along with an improvement of the migratory capacity of the fibroblasts on the treated side. Electron microscopy evaluations showed a clear dermal remodeling in relation with the activation of fibroblast activity. A significant improvement of different clinical signs associated with skin aging and the satisfaction of the subjects were observed, correlated with an improvement of the sagging cheek. CONCLUSION: Mécano-Stimulation is a noninvasive and safe technique delivered by flaps microbeats at various frequencies, which can significantly improve the skin trophicity. Results observed with objective measurements, ie, in vitro assessments and electron microscopy, confirm the firming and restructuring effect clinically observed.
    Clinical Interventions in Aging 02/2015; 10:387-403. DOI:10.2147/CIA.S69752 · 1.82 Impact Factor

Full-text (2 Sources)

Download
121 Downloads
Available from
May 21, 2014