Article

Fully automatic hippocampus segmentation and classification in Alzheimer's disease and mild cognitive impairment applied on data from ADNI.

Université Pierre et Marie Curie-Paris6, CNRS, UMR-S7225, Paris, France.
Hippocampus (Impact Factor: 4.3). 06/2009; 19(6):579-87. DOI: 10.1002/hipo.20626
Source: PubMed

ABSTRACT The hippocampus is among the first structures affected in Alzheimer's disease (AD). Hippocampal magnetic resonance imaging volumetry is a potential biomarker for AD but is hindered by the limitations of manual segmentation. We proposed a fully automatic method using probabilistic and anatomical priors for hippocampus segmentation. Probabilistic information is derived from 16 young controls and anatomical knowledge is modeled with automatically detected landmarks. The results were previously evaluated by comparison with manual segmentation on data from the 16 young healthy controls, with a leave-one-out strategy, and eight patients with AD. High accuracy was found for both groups (volume error 6 and 7%, overlap 87 and 86%, respectively). In this article, the method was used to segment 145 patients with AD, 294 patients with mild cognitive impairment (MCI), and 166 elderly normal subjects from the Alzheimer's Disease Neuroimaging Initiative database. On the basis of a qualitative rating protocol, the segmentation proved acceptable in 94% of the cases. We used the obtained hippocampal volumes to automatically discriminate between AD patients, MCI patients, and elderly controls. The classification proved accurate: 76% of the patients with AD and 71% of the MCI converting to AD before 18 months were correctly classified with respect to the elderly controls, using only hippocampal volume.

Full-text

Available from: Louis Lemieux, Jan 15, 2014
1 Follower
 · 
130 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Indexing and classification tools for Content Based Visual Information Retrieval (CBVIR) have been penetrating the universe of medical image analysis. They have been recently investigated for Alzheimer’s disease (AD) diagnosis. This is a normal “knowledge diffusion” process, when methodologies developed for multimedia mining penetrate a new application area. The latter brings its own specificities requiring an adjustment of methodologies on the basis of domain knowledge. In this paper, we develop an automatic classification framework for AD recognition in structural Magnetic Resonance Images (MRI). The main contribution of this work consists in considering visual features from the most involved region in AD (hippocampal area) and in using a late fusion to increase precision results. Our approach has been first evaluated on the baseline MR images of 218 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database and then tested on a 3T weighted contrast MRI obtained from a subsample of a large French epidemiological study: “Bordeaux dataset”. The experimental results show that our classification of patients with AD versus NC (Normal Control) subjects achieves the accuracies of 87 % and 85 % for ADNI subset and “Bordeaux dataset” respectively. For the most challenging group of subjects with the Mild Cognitive Impairment (MCI), we reach accuracies of 78.22 % and 72.23 % for MCI versus NC and MCI versus AD respectively on ADNI. The late fusion scheme improves classification results by 9 % in average for these three categories. Results demonstrate very promising classification performance and simplicity compared to the state-of-the-art volumetric AD diagnosis methods.
    Multimedia Tools and Applications 02/2014; 74(4). DOI:10.1007/s11042-014-2123-y · 1.06 Impact Factor
  • Source
    MICCAI 2014; 09/2014
  • Source