Article

Activation of Src by protein tyrosine phosphatase 1B Is required for ErbB2 transformation of human breast epithelial cells.

Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.
Cancer Research (Impact Factor: 9.28). 06/2009; 69(11):4582-8. DOI: 10.1158/0008-5472.CAN-08-4001
Source: PubMed

ABSTRACT Protein tyrosine phosphatase (PTP) 1B plays a major role in inhibiting signaling from the insulin and leptin receptors. Recently, PTP1B was found to have an unexpected positive role in ErbB2 signaling in a mouse model of breast cancer, but the mechanism underlying this effect has been unclear. Using human breast epithelial cells grown in a three-dimensional matrix, we found that PTP1B, but not the closely related enzyme T-cell PTP, is required for ErbB2 transformation in vitro. Activation of ErbB2, but not ErbB1, increases PTP1B expression, and increased expression of PTP1B activates Src and induces a Src-dependent transformed phenotype. These findings identify a molecular mechanism by which PTP1B links an important oncogenic receptor tyrosine kinase to signaling pathways that promote aberrant cell division and survival in human breast epithelial cells.

0 Bookmarks
 · 
87 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diacylglycerol kinase (DGK)α converts diacylglycerol to phosphatidic acid. This lipid kinase sustains survival, migration and invasion of tumor cells, with no effect over untransformed cells, suggesting its potential as a cancer-specific target. Nonetheless the mechanisms that underlie DGKα specific contribution to cancer survival have not been elucidated. Using three-dimensional (3D) colon and breast cancer cell cultures, we demonstrate that DGKα upregulation is part of the transcriptional program that results in Src activation in these culture conditions. Pharmacological or genetic DGKα silencing impaired tumor growth in vivo confirming its function in malignant transformation. DGKα-mediated Src regulation contributed to limit the effect of Src inhibitors, and its transcriptional upregulation in response to PI3K/Akt inhibitors resulted in reduced toxicity. Src oncogenic properties and contribution to pharmacological resistance have been linked to its overactivation in cancer. DGKα participation in this central node helps to explain why its pharmacological inhibition or siRNA-mediated targeting specifically alters tumor viability with no effect on untransformed cells. Our results identify DGKα-mediated stabilization of Src activation as an important mechanism in tumor growth, and suggest that targeting this enzyme, alone or in combination with other inhibitors in wide clinical use, could constitute a treatment strategy for aggressive forms of cancer.
    Oncotarget 08/2014; · 6.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The human epidermal growth factor receptor 2 (HER2) is a major player in the survival and proliferation of tumour cells and is overexpressed in up to 30 % of breast cancer cases. A considerable amount of work has been undertaken to unravel the activity and function of HER2 to try and develop effective therapies that impede its action in HER2 positive breast tumours. Research has focused on exploring the HER2 activated phosphoinositide-3-kinase (PI3K)/AKT and rat sarcoma/mitogen-activated protein kinase (RAS/MAPK) pathways for therapies. Despite the advances, cases of drug resistance and recurrence of disease still remain a challenge to overcome. An important aspect for drug resistance is the complexity of the HER2 signaling network. This includes the crosstalk between HER2 and hormone receptors; its function as a transcription factor; the regulation of HER2 by protein-tyrosine phosphatases and a complex network of positive and negative feedback-loops. This review summarises the current knowledge of many different HER2 interactions to illustrate the complexity of the HER2 network from the transcription of HER2 to the effect of its downstream targets. Exploring the novel avenues of the HER2 signaling could yield a better understanding of treatment resistance and give rise to developing new and more effective therapies.
    Journal of Mammary Gland Biology and Neoplasia 12/2014; · 7.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tyrosine phosphorylation of signaling molecules that mediate B cell activation in response to various stimuli is tightly regulated by protein tyrosine phosphatases (PTPs). PTP1B is a ubiquitously expressed tyrosine phosphatase with well-characterized functions in metabolic signaling pathways. We show here that PTP1B negatively regulates CD40, B cell activating factor receptor (BAFF-R), and TLR4 signaling in B cells. Specifically, PTP1B counteracts p38 mitogen-activated protein kinase (MAPK) activation by directly dephosphorylating Tyr(182) of this kinase. Mice with a B cell-specific PTP1B deficiency show increased T cell-dependent immune responses and elevated total serum IgG. Furthermore, aged animals develop systemic autoimmunity with elevated serum anti-dsDNA, spontaneous germinal centers in the spleen, and deposition of IgG immune complexes and C3 in the kidney. In a clinical setting, we observed that B cells of rheumatoid arthritis patients have significantly reduced PTP1B expression. Our data suggest that PTP1B plays an important role in the control of B cell activation and the maintenance of immunological tolerance.
    Journal of Experimental Medicine 03/2014; · 13.91 Impact Factor

Full-text

Download
39 Downloads
Available from
May 31, 2014

Luis E Arias-Romero