Article

Cajal-body formation correlates with differential coilin phosphorylation in primary and transformed cell lines.

Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216, USA.
Journal of Cell Science (Impact Factor: 5.33). 07/2009; 122(Pt 11):1872-81. DOI: 10.1242/jcs.044040
Source: PubMed

ABSTRACT Cajal bodies (CBs) are nuclear structures that are thought to have diverse functions, including small nuclear ribonucleoprotein (snRNP) biogenesis. The phosphorylation status of coilin, the CB marker protein, might impact CB formation. We hypothesize that primary cells, which lack CBs, contain different phosphoisoforms of coilin compared with that found in transformed cells, which have CBs. Localization, self-association and fluorescence recovery after photobleaching (FRAP) studies on coilin phosphomutants all suggest this modification impacts the function of coilin and may thus contribute towards CB formation. Two-dimensional gel electrophoresis demonstrates that coilin is hyperphosphorylated in primary cells compared with transformed cells. mRNA levels of the nuclear phosphatase PPM1G are significantly reduced in primary cells and expression of PPM1G in primary cells induces CBs. Additionally, PPM1G can dephosphorylate coilin in vitro. Surprisingly, however, expression of green fluorescent protein alone is sufficient to form CBs in primary cells. Taken together, our data support a model whereby coilin is the target of an uncharacterized signal transduction cascade that responds to the increased transcription and snRNP demands found in transformed cells.

Download full-text

Full-text

Available from: Eric M George, Jun 28, 2015
2 Followers
 · 
114 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Cajal body (CB) is a domain of concentrated components found within the nucleus of cells in an array of species that is functionally important for the biogenesis of telomerase and small nuclear ribonucleoproteins. The CB is a dynamic structure whose number and size change during the cell cycle and is associated with other nuclear structures and gene loci. Coilin, also known as the marker protein for the CB, is a phosphoprotein widely accepted for its role in maintaining CB integrity. Recent studies have been done to further elucidate functional activities of coilin apart from its structural role in the CB in an attempt to explore the rationale for coilin expression in cells that have few CBs or lack them altogether. Here we show that the RNA association profile of coilin changes in mitosis with respect to that during interphase. We provide evidence of transcriptional and/or processing dysregulation of several CB-related RNA transcripts as a result of ectopic expression of both wild-type and phosphomutant coilin proteins. We also show apparent changes in transcription and/or processing of these transcripts upon coilin knockdown in both transformed and primary cell lines. Additionally, we provide evidence of specific coilin RNase activity regulation, on both U2 and hTR transcripts, by phosphorylation of a single residue, serine 489. Collectively, these results point to additional functions for coilin that are regulated by phosphorylation.
    04/2013; 2(4):407-15. DOI:10.1242/bio.20133863
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nucleolus is the subnuclear organelle responsible for ribosome subunit biogenesis and can also act as a stress sensor. It forms around clusters of ribosomal DNA (rDNA) and is mainly organised in three subcompartments, i.e. fibrillar centre, dense fibrillar component and granular component. Here, we describe the localisation of 21 protein factors to an intranucleolar region different to these main subcompartments, called the intranucleolar body (INB). These factors include proteins involved in DNA maintenance, protein turnover, RNA metabolism, chromatin organisation and the post-translational modifiers SUMO1 and SUMO2/3. Increase in the size and number of INBs is promoted by specific types of DNA damage and depends on the functional integrity of the nucleolus. INBs are abundant in nucleoli of unstressed cells during S phase and localise in close proximity to rDNA with heterochromatic features. The data suggest the INB is linked with regulation of rDNA transcription and/or maintenance of rDNA. Electronic supplementary material The online version of this article (doi:10.1007/s00412-011-0327-8) contains supplementary material, which is available to authorized users.
    Chromosoma 06/2011; 120(5):481-99. DOI:10.1007/s00412-011-0327-8 · 3.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nucleus is unique amongst cellular organelles in that it contains a myriad of discrete suborganelles. These nuclear bodies are morphologically and molecularly distinct entities, and they host specific nuclear processes. Although the mode of biogenesis appears to differ widely between individual nuclear bodies, several common design principles are emerging, particularly, the ability of nuclear bodies to form de novo, a role of RNA as a structural element and self-organization as a mode of formation. The controlled biogenesis of nuclear bodies is essential for faithful maintenance of nuclear architecture during the cell cycle and is an important part of cellular responses to intra- and extracellular events.
    Cold Spring Harbor perspectives in biology 11/2010; 2(12):a000711. DOI:10.1101/cshperspect.a000711 · 8.23 Impact Factor