Article

Cortical α7 Nicotinic Acetylcholine Receptor and β-Amyloid Levels in Early Alzheimer Disease

Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Archives of neurology (Impact Factor: 7.01). 06/2009; 66(5):646-51. DOI: 10.1001/archneurol.2009.46
Source: PubMed

ABSTRACT To examine alpha7 nicotinic acetylcholine receptor (nAChR) binding and beta-amyloid (Abeta) peptide load in superior frontal cortex (SFC) across clinical and neuropathological stages of Alzheimer disease (AD).
Quantitative measures of alpha7 nAChR by [(3)H]methyllycaconitine binding and Abeta concentration by enzyme-linked immunosorbent assay in SFC were compared across subjects with antemortem clinical classification of no cognitive impairment, mild cognitive impairment, or mild to moderate AD, and with postmortem neuropathological diagnoses.
Academic medical center. Subjects Twenty-nine elderly retired clergy.
Quantitative measures of alpha7 nAChR binding and Abeta peptide concentration in SFC.
Higher concentrations of total Abeta peptide in SFC were associated with clinical diagnosis of mild to moderate AD (P = .02), lower Mini-Mental State Examination scores (P = .003), presence of cortical Abeta plaques (P = .02), and likelihood of AD diagnosis by the National Institute on Aging-Reagan criteria (P = .002). Increased alpha7 nAChR binding was associated with National Institute on Aging-Reagan diagnosis (P = .02) and, albeit weakly, the presence of cortical Abeta plaques (P = .08). There was no correlation between the 2 biochemical measures.
These observations suggest that during the clinical progression from normal cognition to neurodegenerative disease state, total Abeta peptide concentration increases while alpha7 nAChRs remain relatively stable in SFC. Regardless of subjects' clinical status, however, elevated alpha7 nAChR binding is associated with increased Abeta plaque pathology, supporting the hypothesis that cellular expression of these receptors may be upregulated selectively in Abeta plaque-burdened brain areas.

Download full-text

Full-text

Available from: Stephen D Ginsberg, Jun 21, 2015
0 Followers
 · 
111 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nicotinic receptors (nAChRs), which play a critical role in cognitive function, are impaired early in the course of Alzheimer's disease (AD). We have previously demonstrated that amyloid-β (Aβ) assemblies bind to α7 nAChRs and form complexes in AD brain, suggesting that this cooperative process may contribute to disruption of synaptic function in AD. In the current study, we further characterized the interaction between different nAChR subtypes and fibrillar Aβ by binding assays in postmortem brain from AD and control cases using a wide range of drugs with different molecular targets, including selective nAChR subtype agonists, and the amyloid ligand Pittsburgh compound B (PIB) that binds with high (nanomolar) affinity to fibrillar Aβ. The α7 nAChR agonists varenicline and JN403, but not the α4β2 nAChR agonist cytisine, increased the 3H-PIB binding in autopsy tissue homogenates from AD and control frontal cortex. This effect was blocked in the presence of the α7 nAChR antagonists methyllycaconitine, α-bungarotoxin, and mecamylamine, but not by the α4β2 nAChR antagonist dihydro-β-erythroidine. Increases in 3H-PIB binding evoked by varenicline and JN403 were also prevented by pre-incubation with another amyloid ligand, BF-227. The acetylcholinesterase inhibitor and allosteric nAChR modulator galantamine as well as the N-methyl-d-aspartate receptor blocker memantine did not significantly alter 3H-PIB binding levels in AD brain. The present findings further support a specific interaction between fibrillar Aβ and α7 nAChRs in the brain, suggesting that treatment with α7 nAChR stimulatory drugs can modulate Aβ/α7 nAChR pathogenic signaling mechanisms in AD brain.
    Journal of Alzheimer's disease: JAD 10/2012; 33(3). DOI:10.3233/JAD-2012-121447 · 3.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we examined the relationship between various β-amyloid (Aβ) oligomer assemblies in autopsy brain with the levels of fibrillar Aβ and cholinergic synaptic function. Brain tissues obtained from the frontal cortex of 14 Alzheimer's disease (AD) patients grouped into early-onset AD (EOAD) and late-onset AD (LOAD) and 12 age-matched control subjects were used to extract and quantify Aβ oligomers in soluble (TBS), detergent soluble (TBST), and insoluble (GuHCl) fractions. The predominant oligomeric Aβ assemblies detected were dodecamers, decamers, and pentamers, and different patterns of expression were observed between EOAD and LOAD patients. There was no association between any of the detected Aβ oligomer assemblies and fibrillar Aβ levels measured by N-methyl[(3)H] 2-(40-methylaminophenyl)-6-hydroxy-benzothiazole ([(3)H]PIB) binding. Levels of pentamers in the soluble fraction significantly correlated with a reduction in choline acetyltransferase activity in AD patients. The number of nicotinic acetylcholine receptors negatively correlated with the total amount of Aβ oligomers in the insoluble fraction in EOAD patients, and with decamers in the soluble fraction in LOAD patients. These novel findings suggest that distinct Aβ oligomers induce impairment of cholinergic neurotransmission in AD pathogenesis.
    Neurobiology of aging 06/2011; 33(4):825.e1-13. DOI:10.1016/j.neurobiolaging.2011.05.003 · 4.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The accumulation of β-amyloid in the brain is an early event in Alzheimer's disease. This study presents the first patient with Alzheimer's disease who underwent positron emission tomography imaging with the amyloid tracer, Pittsburgh Compound B to visualize fibrillar β-amyloid in the brain. Here we relate the clinical progression, amyloid and functional brain positron emission tomography imaging with molecular neuropathological alterations at autopsy to gain new insight into the relationship between β-amyloid accumulation, inflammatory processes and the cholinergic neurotransmitter system in Alzheimer's disease brain. The patient underwent positron emission tomography studies with (18)F-fluorodeoxyglucose three times (at ages 53, 56 and 58 years) and twice with Pittsburgh Compound B (at ages 56 and 58 years), prior to death at 61 years of age. The patient showed a pronounced decline in cerebral glucose metabolism and cognition during disease progression, while Pittsburgh Compound B retention remained high and stable at follow-up. Neuropathological examination of the brain at autopsy confirmed the clinical diagnosis of pure Alzheimer's disease. A comprehensive neuropathological investigation was performed in nine brain regions to measure the regional distribution of β-amyloid, neurofibrillary tangles and the levels of binding of (3)H-nicotine and (125)I-α-bungarotoxin to neuronal nicotinic acetylcholine receptor subtypes, (3)H-L-deprenyl to activated astrocytes and (3)H-PK11195 to microglia, as well as butyrylcholinesterase activity. Regional in vivo (11)C-Pittsburgh Compound B-positron emission tomography retention positively correlated with (3)H-Pittsburgh Compound B binding, total insoluble β-amyloid, and β-amyloid plaque distribution, but not with the number of neurofibrillary tangles measured at autopsy. There was a negative correlation between regional fibrillar β-amyloid and levels of (3)H-nicotine binding. In addition, a positive correlation was found between regional (11)C-Pittsburgh Compound B positron emission tomography retention and (3)H-Pittsburgh Compound B binding with the number of glial fibrillary acidic protein immunoreactive cells, but not with (3)H-L-deprenyl and (3)H-PK-11195 binding. In summary, high (11)C-Pittsburgh Compound B positron emission tomography retention significantly correlates with both fibrillar β-amyloid and losses of neuronal nicotinic acetylcholine receptor subtypes at autopsy, suggesting a closer involvement of β-amyloid pathology with neuronal nicotinic acetylcholine receptor subtypes than with inflammatory processes.
    Brain 01/2011; 134(Pt 1):301-17. DOI:10.1093/brain/awq349 · 10.23 Impact Factor