Article

Environmental estrogens and obesity.

Developmental Endocrinology and Endocrine Disruptor Section, Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States.
Molecular and Cellular Endocrinology (Impact Factor: 4.24). 06/2009; 304(1-2):84-9. DOI: 10.1016/j.mce.2009.02.024
Source: PubMed

ABSTRACT Many chemicals in the environment, in particular those with estrogenic activity, can disrupt the programming of endocrine signaling pathways that are established during development and result in adverse consequences that may not be apparent until much later in life. Most recently, obesity and diabetes join the growing list of adverse consequences that have been associated with developmental exposure to environmental estrogens during critical stages of differentiation. These diseases are quickly becoming significant public health issues and are fast reaching epidemic proportions worldwide. In this review, we summarize the literature from experimental animal studies documenting an association of environmental estrogens and the development of obesity, and further describe an animal model of exposure to diethylstilbestrol (DES) that has proven useful in studying mechanisms involved in abnormal programming of various differentiating estrogen-target tissues. Other examples of environmental estrogens including the phytoestrogen genistein and the environmental contaminant Bisphenol A are also discussed. Together, these data suggest new targets (i.e., adipocyte differentiation and molecular mechanisms involved in weight homeostasis) for abnormal programming by estrogenic chemicals, and provide evidence that support the scientific hypothesis termed "the developmental origins of adult disease". The proposal of an association of environmental estrogens with obesity and diabetes expands the focus on the diseases from intervention/treatment to include prevention/avoidance of chemical modifiers especially during critical windows of development.

0 Followers
 · 
104 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The progressively older population in developed countries is reflected in an increase in the number of people suffering from age-related chronic inflammatory diseases such as metabolic syndrome, diabetes, heart and lung diseases, cancer, osteoporosis, arthritis, and dementia. The heterogeneity in biological aging, chronological age, and aging-associated disorders in humans have been ascribed to different genetic and environmental factors (i.e., diet, pollution, stress) that are closely linked to socioeconomic factors. The common denominator of these factors is the inflammatory response. Chronic low-grade systemic inflammation during physiological aging and immunosenescence are intertwined in the pathogenesis of premature aging also defined as „inflammaging.‟ The latter has been associated with frailty, morbidity, and mortality in elderly subjects. However, it is unknown to what extent inflammaging or longevity is controlled by epigenetic events in early life. Today, human diet is believed to have a major influence on both the development and prevention of age-related diseases. Most plant-derived dietary phytochemicals and macroand micronutrients modulate oxidative stress and inflammatory signaling and regulate metabolic pathways and bioenergetics that can be translated into stable epigenetic patterns of gene expression. Therefore, diet interventions designed for healthy aging have become a hot topic in nutritional epigenomic research. Increasing evidence has revealed that complex interactions between food components and histone modifications, DNA methylation, noncoding RNA expression, and chromatin remodeling factors influence the inflammaging phenotype and as such may protect or predispose an individual to many age-related diseases. Remarkably, humans present a broad range of responses to similar dietary challenges due to both genetic and epigenetic modulations of the expression of target proteins and key genes involved in the metabolism and distribution of the dietary constituents. Here, we will summarize the epigenetic actions of dietary components, including phytochemicals, and macro- and micronutrients as well as metabolites, that can attenuate inflammaging. We will discuss the challenges facing personalized nutrition to translate highly variable interindividual epigenetic diet responses to potential individual health benefits/risks related to aging disease.
    Clinical Epigenetics 03/2015; 7(1):33. DOI:10.1186/s13148-015-0068-2 · 6.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective. The present study aimed to examine the association between serum BPA and hypertension and evaluated whether it was influenced by estradiol level. Methods. A subsample of 2588 sera randomly selected from the Thai National Health Examination Survey IV, 2009, was measured for serum BPA and estradiol. Logistic regression was used to examine the association controlling for age, sex, diabetes, body mass index, and estradiol level. Results. Compared with the lowest quartile, the adjusted odds ratio (AOR) of hypertension for the fourth quartile of serum BPA was 2.16 (95% CI 1.31, 3.56) in women and 1.44 (0.99, 2.09) in men. There was no interaction between serum BPA and estradiol level. For analysis using log(BPA) as a continuous variable, the AOR per unit change in log(BPA) was 1.09 (95% CI 1.02, 1.16). Among postmenopausal women, the AOR for the fourth quartile of BPA was 2.33 (95% CI 1.31, 4.15) and, for premenopausal women, it was 2.12 (95% CI 0.87, 5.19). Conclusion. Serum BPA was independently associated with hypertension in women and was not likely to be affected by estrogen; however, its mechanism related to blood pressure needs further investigation.
    02/2015; 2015:1-8. DOI:10.1155/2015/594189
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Numerous experimental, clinical and epidemiological studies show that exposure to environmental contaminants may disrupt endocrine and metabolic functions of our organism. This would contribute to the development of obesity and associated metabolic disorders such as nonalcoholic hepatic steatosis, characterized by an excessive accumulation of triglycerides in the liver, which may lead to more severe forms of NAFLD (Non-Alcoholic Fatty Liver Diseases) such as inflammation, fibrosis, cirrhosis and hepatocellular carcinoma. In this work, in vivo studies have highlighted that chronic exposure to the xenoestrogen BPA, widely used in plastic food packaging industry, affects hepatic energy metabolism. It promotes the storage of triglycerides and cholesterol ester in the liver, in association with the induction of the hepatic transcriptome, more particularly of genes involved in lipid, carbohydrates and cholesterol synthesis. These effects, which could contribute to promote hepatic steatosis, follow an inverted U shape non-monotonic dose-response curve and were observed below the reference dose in regulatory toxicology: the tolerable daily intake. These results strengthen the idea that BPA act as a metabolic disruptor, particularly at low doses. Nuclear receptors are targets through which metabolic disruptors may influence gene expression. Recent studies showed that the nuclear receptors CAR (Constitutive Receptor Androstane) and PXR (Pregnane X Receptor), initially identified as key receptors of the detoxification process, are also involved in the regulation of energy metabolism. We identified the gene coding for adiponutrin/PNPLA3 (Patatin-like phospholipase domain-containing) as a new target of these xenosensors. We have shown with transgenic animal models and with hepatocyte cell lines that the CAR and PXR receptors regulate the Pnpla3 gene expression. This protein has a central role in hepatic lipid metabolism through its dual transacylase and lipase activity. In human, a variant of the Pnpla3 (SNP I148M) gene has been identified as a new marker of hepatic steatosis and is associated with an increased risk of NAFLD. Since the xenosensors CAR and PXR are known to be activated by many drugs and environmental pollutants, our results highlight the risk of a development of hepatic steatosis after their activation. Taken together, these results highlight the risk of metabolic disruptions after exposure to various environmental contaminants such as endocrine disruptors and CAR activators. RÉSUMÉ De nombreuses études expérimentales, cliniques et épidémiologiques récentes montrent que l’exposition à des contaminants de notre environnement pourrait perturber les fonctions métaboliques et endocriniennes des organismes. Ceci contribuerait au développement de l'obésité et des pathologies métaboliques associées telles que la stéatose hépatique non alcoolique, caractérisée par une accumulation massive de triglycérides dans le foie, et qui est susceptible d’évoluer vers des pathologies plus sévères (inflammation, fibrose, cirrhose, carcinome hépatocellulaire), regroupées sous le terme de NAFLD (Non- Alcoholic Fatty Liver Diseases). Nos études réalisées chez le rongeur nous ont permis de mettre en évidence un impact sur le métabolisme hépatique suite à une exposition chronique au Bisphénol A (BPA), un contaminant oestrogéno-mimétique largement exploité dans l’industrie des emballages alimentaires plastiques. Il modifie l’expression des gènes impliqués dans la synthèse des lipides, des glucides et du cholestérol et favorise l’accumulation de triglycérides et d’esters de cholestérol au niveau hépatique. Ces effets, qui pourraient contribuer à l’émergence de la stéatose hépatique, ont été observés en deçà de la dose de référence en toxicologie réglementaire (la dose journalière admissible) et suivent une courbe dose-réponse non monotone en U inversé. Ces résultats renforcent l’idée que le BPA est un perturbateur métabolique, surtout lors d’expositions à faibles doses. Les récepteurs nucléaires représentent des cibles potentielles des perturbateurs métaboliques. Plusieurs études récentes montrent que les récepteurs nucléaires CAR (Constitutive Androstane Receptor) et PXR (Pregnane X Receptor), initialement identifiés comme des récepteurs clés du système de détoxification, sont également impliqués dans la régulation du métabolisme énergétique. Nos travaux ont permis d’identifier une nouvelle cible de ces xénosenseurs : le gène codant pour l’adiponutrine/PNPLA3 (Patatinlike phospholipase domain-containing). Nous avons montré, in vivo et sur des lignées d'hépatocytes en culture, que les récepteurs CAR et PXR régulent l’expression du gène Pnpla3. Cette protéine présente une activité à la fois transacylase et lipase qui lui confère un rôle central dans la régulation du métabolisme lipidique hépatique. Chez l’Homme, un variant du gène Pnpla3 (SNP I148M) a été identifié comme un nouveau marqueur de la stéatose hépatique et est associé à un risque accru de développement de NAFLD. Les xénosenseurs CAR et PXR étant activés par de nombreux médicaments et polluants environnementaux, nos résultats mettent en exergue le risque de développement de stéatoses hépatiques suite à leur activation. L’ensemble de ces résultats renforce l’idée d’un risque de développement de pathologies métaboliques suite à l’exposition à différents contaminants environnementaux, qu’il s’agisse de perturbateurs endocriniens de type métaboliques ou d’activateurs des xénosenseurs CAR et PXR.
    12/2012, Degree: PhD, Supervisor: Dr Laila MSELLI-LAKHAL ; Dr Thierry PINEAU

Full-text (2 Sources)

Download
10 Downloads
Available from
Jul 23, 2014