Article

MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer

Department of Surgery, Clinical Science Institute, University Hospital/National University of Ireland Galway, Galway, Ireland.
Breast cancer research: BCR (Impact Factor: 5.88). 06/2009; 11(3):R27. DOI: 10.1186/bcr2257
Source: PubMed Central

ABSTRACT Breast cancer is a heterogeneous disease encompassing a number of phenotypically diverse tumours. Expression levels of the oestrogen, progesterone and HER2/neu receptors which characterize clinically distinct breast tumours have been shown to change during disease progression and in response to systemic therapies. Mi(cro)RNAs play critical roles in diverse biological processes and are aberrantly expressed in several human neoplasms including breast cancer, where they function as regulators of tumour behaviour and progression. The aims of this study were to identify miRNA signatures that accurately predict the oestrogen receptor (ER), progesterone receptor (PR) and HER2/neu receptor status of breast cancer patients to provide insight into the regulation of breast cancer phenotypes and progression.
Expression profiling of 453 miRNAs was performed in 29 early-stage breast cancer specimens. miRNA signatures associated with ER, PR and HER2/neu status were generated using artificial neural networks (ANN), and expression of specific miRNAs was validated using RQ-PCR.
Stepwise ANN analysis identified predictive miRNA signatures corresponding with oestrogen (miR-342, miR-299, miR-217, miR-190, miR-135b, miR-218), progesterone (miR-520g, miR-377, miR-527-518a, miR-520f-520c) and HER2/neu (miR-520d, miR-181c, miR-302c, miR-376b, miR-30e) receptor status. MiR-342 and miR-520g expression was further analysed in 95 breast tumours. MiR-342 expression was highest in ER and HER2/neu-positive luminal B tumours and lowest in triple-negative tumours. MiR-520g expression was elevated in ER and PR-negative tumours.
This study demonstrates that ANN analysis reliably identifies biologically relevant miRNAs associated with specific breast cancer phenotypes. The association of specific miRNAs with ER, PR and HER2/neu status indicates a role for these miRNAs in disease classification of breast cancer. Decreased expression of miR-342 in the therapeutically challenging triple-negative breast tumours, increased miR-342 expression in the luminal B tumours, and downregulated miR-520g in ER and PR-positive tumours indicates that not only is dysregulated miRNA expression a marker for poorer prognosis breast cancer, but that it could also present an attractive target for therapeutic intervention.

1 Follower
 · 
185 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Breast cancer is a complex and heterogeneous disease. Signaling by estrogen receptor (ER), progesterone receptor (PR), and/or human EGF-like receptor 2 (HER2) is a main driver in the development and progression of a large majority of breast tumors. Molecular characterization of primary tumors has identified major subtypes that correlate with ER/PR/HER2 status, and also subgroup divisions that indicate other molecular and cellular features of the tumors. While some of these research findings have been incorporated into clinical practice, several challenges remain to improve breast cancer management and patient survival, for which the integration of novel biomarkers into current practice should be beneficial. microRNAs (miRNAs) are a class of short non-coding regulatory RNAs with an etiological contribution to breast carcinogenesis. miRNA-based diagnostic and therapeutic applications are rapidly emerging as novel potential approaches to manage and treat breast cancer. Rapid technological development enables specific and sensitive detection of individual miRNAs or the entire miRNome in tissues, blood, and other biological specimens from breast cancer patients. This review focuses on recent miRNA research and its potential to address unmet clinical needs and challenges. The four sections presented discuss miRNA findings in the context of the following clinical challenges: biomarkers for early detection; prognostic and predictive biomarkers for treatment decisions using targeted therapies against ER and HER2; diagnostic and prognostic biomarkers for subgrouping of triple-negative breast cancer, for which there are currently no targeted therapies; and biomarkers for monitoring and characterization of metastatic breast cancer. The review concludes with a critical analysis of the current state of miRNA breast cancer research and the need for further studies using large patient cohorts under well-controlled conditions before considering the clinical implementation of miRNA biomarkers.
    Breast Cancer: Targets and Therapy 02/2015; 7:59-79. DOI:10.2147/BCTT.S43799
  • [Show abstract] [Hide abstract]
    ABSTRACT: Increasing evidence has suggested that microRNAs (miRNAs) play an important role in the initiation and progression of hepatocellular carcinoma (HCC). Here, we identified a novel tumor suppressive miRNA, miR-377, and investigated its role in HCC. The expression of miR-377 in HCC tissues and cell lines was detected by real-time reverse-transcription PCR. The effects of miR-377 on HCC cell proliferation and invasion were also investigated. Western blot and luciferase reporter assay were used to identify the direct and functional target of miR-377. The expression of miR-377 was markedly downregulated in human HCC tissues and cell lines. MiR-377 can dramatically inhibit cell growth and invasion in HCC cells. Subsequent investigation revealed that T lymphoma invasion and metastasis 1 (TIAM1) was a direct and functional target of miR-377 in HCC cells. Overexpression of miR-377 impaired TIAM1-induced promotion of proliferation and invasion in HCC cells. Finally, miR-377 is inversely correlated with TIAM1 expression in human HCC tissues. These findings reveal that miR-377 functions as a tumor suppressor and inhibits the proliferation and invasion of HCC cells by targeting TIAM1, which may consequently serve as a therapeutic target for HCC patients.
    PLoS ONE 03/2015; 10(3):e0117714. DOI:10.1371/journal.pone.0117714 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are an emerging class of gene expression modulators with relevant roles in several biological processes, including cell differentiation, development, apoptosis, and regulation of the cell cycle. Deregulation of those tiny RNA molecules has been described frequently as a major determinant for the initiation and progression of diseases, including cancer. Not only miRNAs but also the enzymes responsible for miRNA processing could be deregulated in cancer. In this review, we address the role of miRNAs in the pathogenesis of breast cancer, since there are oncogenic, tumor-suppressive, and metastatic-influencing miRNAs. Additionally, the different detection platforms and normalization strategies for miRNAs will be discussed. The major part of this review, however, will focus on the capability of miRNAs to act as diagnostic, predictive, or prognostic biomarkers. We will give an overview of their potential to correlate with response to or benefit from a given treatment and we will consider their ability to give information on prognosis in breast cancer. We will focus on miRNAs validated by more than one study or verified in independent cohorts or where results rely on preclinical as well as clinical evidence. As such, we will discuss their potential use in the personalized management of breast cancer.
    Breast Cancer Research 12/2015; 17(1). DOI:10.1186/s13058-015-0526-y · 5.33 Impact Factor

Full-text (4 Sources)

Download
91 Downloads
Available from
May 19, 2014