Article

A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies.

Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA.
Nature Genetics (Impact Factor: 29.65). 06/2009; 41(6):739-45. DOI: 10.1038/ng.366
Source: PubMed

ABSTRACT Despite rapid advances in the identification of genes involved in disease, the predictive power of the genotype remains limited, in part owing to poorly understood effects of second-site modifiers. Here we demonstrate that a polymorphic coding variant of RPGRIP1L (retinitis pigmentosa GTPase regulator-interacting protein-1 like), a ciliary gene mutated in Meckel-Gruber (MKS) and Joubert (JBTS) syndromes, is associated with the development of retinal degeneration in individuals with ciliopathies caused by mutations in other genes. As part of our resequencing efforts of the ciliary proteome, we identified several putative loss-of-function RPGRIP1L mutations, including one common variant, A229T. Multiple genetic lines of evidence showed this allele to be associated with photoreceptor loss in ciliopathies. Moreover, we show that RPGRIP1L interacts biochemically with RPGR, loss of which causes retinal degeneration, and that the Thr229-encoded protein significantly compromises this interaction. Our data represent an example of modification of a discrete phenotype of syndromic disease and highlight the importance of a multifaceted approach for the discovery of modifier alleles of intermediate frequency and effect.

0 Bookmarks
 · 
160 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Joubert (JBTS) and Meckel-Gruber (MKS) syndromes are recessive neurodevelopmental conditions caused by mutations in proteins that are structural or functional components of the primary cilium. In this review we provide an overview of their clinical diagnosis, management and molecular genetics. Both have variable phenotypes, extreme genetic heterogeneity, and display allelism both with each other and other ciliopathies. Recent advances in genetic technology have significantly improved diagnosis and clinical management of ciliopathy patients, with the delineation of some general genotype-phenotype correlations. We highlight those that are most relevant for clinical practice, including the correlation between TMEM67 mutations and the JBTS variant phenotype of COACH syndrome. The subcellular localization of the known MKS and JBTS proteins is now well-described, and we discuss some of the contemporary ideas about ciliopathy disease pathogenesis. Most JBTS and MKS proteins localize to a discrete ciliary compartment called the transition zone (TZ), and act as structural components of the so-called "ciliary gate" to regulate the ciliary trafficking of cargo proteins or lipids. Cargo proteins include enzymes and transmembrane proteins that mediate intracellular signaling. The disruption of TZ function may contribute to the ciliopathy phenotype by altering the composition of the ciliary membrane or axoneme, with impacts on essential developmental signaling including the Wnt and Shh pathways as well as the regulation of secondary messengers such as inositol-1,4,5-trisphosphate (InsP3) and cAMP. However, challenges remain in the interpretation of the pathogenic potential of genetic variants of unknown significance, and in the elucidation of the molecular mechanisms of phenotypic variability in JBTS and MKS. The further genetic and functional characterization of these conditions is essential to prioritize patients for new targeted therapies.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bardet–Biedl syndrome (BBS) is a rare pediatric ciliopathy characterized by marked clinical variability and extensive genetic heterogeneity. Typical diagnosis of BBS is secured at a median of 9 years of age, and sometimes well into adolescence. Here, we report a patient in whom prenatal detection of increased nuchal fold, enlarged echogenic kidneys, and polydactyly prompted us to screen the most commonly mutated genes in BBS and the phenotypically and genetically overlapping ciliopathy, Meckel–Gruber syndrome (MKS). We identified the common Met390Arg mutation in BBS1 in compound heterozygosity with a novel intronic variant of unknown significance (VUS). Testing of mRNA harvested from primary foreskin fibroblasts obtained shortly after birth revealed the VUS to induce a cryptic splice site, which in turn led to a premature termination and mRNA degradation. To our knowledge, this is the earliest diagnosis of BBS in the absence of other affected individuals in the family, and exemplifies how combining clinical assessment with genetic and timely assays of variant pathogenicity can inform clinical diagnosis and assist with patient management in the prenatal and neonatal setting.
    Clinical Genetics 06/2013; 83(6). DOI:10.1111/cge.12022 · 3.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We describe a consanguineous Iraqi family with Leber congenital amaurosis (LCA), Joubert syndrome (JBTS), and polycystic kidney disease (PKD). Targeted next‐generation sequencing for excluding mutations in known LCA and JBTS genes, homozygosity mapping, and whole‐exome sequencing identified a homozygous missense variant, c.317G>C (p.Arg106Pro), in POC1B, a gene essential for ciliogenesis, basal body, and centrosome integrity. In silico modeling suggested a requirement of p.Arg106 for the formation of the third WD40 repeat and a protein interaction interface. In human and mouse retina, POC1B localized to the basal body and centriole adjacent to the connecting cilium of photoreceptors and in synapses of the outer plexiform layer. Knockdown of Poc1b in zebrafish caused cystic kidneys and retinal degeneration with shortened and reduced photoreceptor connecting cilia, compatible with the human syndromic ciliopathy. A recent study describes homozygosity for p.Arg106Pro POC1B in a family with nonsyndromic cone‐rod dystrophy. The phenotype associated with homozygous p.Arg106Pro POC1B may thus be highly variable, analogous to homozygous p.Leu710Ser in WDR19 causing either isolated retinitis pigmentosa or Jeune syndrome. Our study indicates that POC1B is required for retinal integrity, and we propose POC1B mutations as a probable cause for JBTS with severe PKD. We describe a family with severe congenital retinal degeneration (LCA), Joubert syndrome and massively enlarged polycystic kidneys. It results from a homozygous missense mutation in POC1B, a gene essential for ciliogenesis, basal body and centrosome integrity. Knockdown in zebrafish evokes a corresponding ocular‐renal phenotype. In view of simultaneous studies reporting mutations in non‐syndromic cone‐rod dystrophy, our findings suggest that POC1B mutations may cause retinal ciliopathies of variable severity.
    Human Mutation 10/2014; 35(10). DOI:10.1002/humu.22618 · 5.05 Impact Factor

Full-text (2 Sources)

Download
50 Downloads
Available from
May 17, 2014