Article

Canine leishmaniosis in South America.

Department of Veterinary Public Health, Faculty of Veterinary Medicine, University of Bari, 70010 Valenzano, Bari, Italy. .
Parasites & Vectors (Impact Factor: 3.25). 02/2009; 2 Suppl 1:S1. DOI: 10.1186/1756-3305-2-S1-S1
Source: PubMed

ABSTRACT ABSTRACT : Canine leishmaniosis is widespread in South America, where a number of Leishmania species have been isolated or molecularly characterised from dogs. Most cases of canine leishmaniosis are caused by Leishmania infantum (syn. Leishmania chagasi) and Leishmania braziliensis. The only well-established vector of Leishmania parasites to dogs in South America is Lutzomyia longipalpis, the main vector of L. infantum, but many other phlebotomine sandfly species might be involved. For quite some time, canine leishmaniosis has been regarded as a rural disease, but nowadays it is well-established in large urbanised areas. Serological investigations reveal that the prevalence of anti-Leishmania antibodies in dogs might reach more than 50%, being as high as 75% in highly endemic foci. Many aspects related to the epidemiology of canine leishmaniosis (e.g., factors increasing the risk disease development) in some South American countries other than Brazil are poorly understood and should be further studied. A better understanding of the epidemiology of canine leishmaniosis in South America would be helpful to design sustainable control and prevention strategies against Leishmania infection in both dogs and humans.

0 Bookmarks
 · 
122 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leishmaniasis remains a major public health problem worldwide and is classified as Category I by the TDR/WHO, mainly due to the absence of control. Many experimental models like rodents, dogs and monkeys have been developed, each with specific features, in order to characterize the immune response to Leishmania species, but none reproduces the pathology observed in human disease. Conflicting data may arise in part because different parasite strains or species are being examined, different tissue targets (mice footpad, ear, or base of tail) are being infected, and different numbers ("low" 1×102 and "high" 1×106) of metacyclic promastigotes have been inoculated. Recently, new approaches have been proposed to provide more meaningful data regarding the host response and pathogenesis that parallels human disease. The use of sand fly saliva and low numbers of parasites in experimental infections has led to mimic natural transmission and find new molecules and immune mechanisms which should be considered when designing vaccines and control strategies. Moreover, the use of wild rodents as experimental models has been proposed as a good alternative for studying the host-pathogen relationships and for testing candidate vaccines. To date, using natural reservoirs to study Leishmania infection has been challenging because immunologic reagents for use in wild rodents are lacking. This review discusses the principal immunological findings against Leishmania infection in different animal models highlighting the importance of using experimental conditions similar to natural transmission and reservoir species as experimental models to study the immunopathology of the disease.
    Revista do Instituto de Medicina Tropical de São Paulo 56(1):1-11. · 0.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Host preference studies in haematophagous insects e.g. Culicoides biting midges are pivotal to assess transmission routes of vector-borne diseases and critical for the development of veterinary contingency plans to identify which species should be included due to their risk potential. Species of Culicoides have been found in almost all parts of the world and known to live in a variety of habitats. Several parasites and viruses are transmitted by Culicoides biting midges including Bluetongue virus and Schmallenberg virus. The aim of the present study was to determine the identity and diversity of blood meals taken from vertebrate hosts in wild-caught Culicoides biting midges near livestock farms. Biting midges were collected at weekly intervals for 20 weeks from May to October 2009 using light traps at four collection sites on the island Sealand, Denmark. Blood-fed female biting midges were sorted and head and wings were removed for morphological species identification. The thoraxes and abdomens including the blood meals of the individual females were subsequently subjected to DNA isolation. The molecular marker cytochrome oxidase I (COI barcode) was applied to identify the species of the collected biting midges (GenBank accessions JQ683259-JQ683374). The blood meals were first screened with a species-specific cytochrome b primer pair for cow and if negative with a universal cytochrome b primer pair followed by sequencing to identify mammal or avian blood meal hosts. Twenty-four species of biting midges were identified from the four study sites. A total of 111,356 Culicoides biting midges were collected, of which 2,164 were blood-fed. Specimens of twenty species were identified with blood in their abdomens. Blood meal sources were successfully identified by DNA sequencing from 242 (76%) out of 320 Culicoides specimens. Eight species of mammals and seven species of birds were identified as blood meal hosts. The most common host species was the cow, which constituted 77% of the identified blood meals. The second most numerous host species was the common wood pigeon, which constituted 6% of the identified blood meals. Our results suggest that some Culicoides species are opportunistic and readily feed on a variety of mammals and birds, while others seems to be strictly mammalophilic or ornithophilic. Based on their number, dispersal potential and blood feeding behaviour, we conclude that Culicoides biting midges are potential vectors for many pathogens not yet introduced to Denmark.
    Parasites & Vectors 07/2012; 5:143. · 3.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Canine leishmaniosis is a potentially life-threatening disease which is spreading geographically in the Old and New Worlds, where different diagnostic procedures, treatments, and control strategies are currently in place. This Opinion article outlines the similarities and differences between canine leishmaniosis in the Old and New Worlds, with emphasis on South America and Europe. Finally, it calls the attention of veterinary and public health authorities to standardize and improve practices for diagnosing, treating, and preventing the disease.
    Trends in Parasitology 09/2012; · 5.51 Impact Factor

Full-text (3 Sources)

View
52 Downloads
Available from
May 31, 2014