Article

Effect of in-water recompression with oxygen to 6 msw versus normobaric oxygen breathing on bubble formation in divers.

Ecole de Plongée Marine Nationale, 83800 Toulon Armées, France.
Arbeitsphysiologie (Impact Factor: 2.66). 06/2009; 106(5):691-5. DOI: 10.1007/s00421-009-1065-y
Source: PubMed

ABSTRACT It is generally accepted that the incidence of decompression sickness (DCS) from hyperbaric exposures is low when few or no bubbles are present in the circulation. To date, no data are available on the influence of in-water oxygen breathing on bubble formation following a provocative dive in man. The purpose of this study was to compare the effect of post-dive hyperbaric versus normobaric oxygen breathing (NOB) on venous circulating bubbles. Nineteen divers carried out open-sea field air dives at 30 msw depth for 30 min followed by a 9 min stop at 3 msw. Each diver performed three dives: one control dive, and two dives followed by 30 min of hyperbaric oxygen breathing (HOB) or NOB; both HOB and NOB started 10 min after surfacing. For HOB, divers were recompressed in-water to 6 msw at rest, whereas NOB was performed in a dry room in supine position. Decompression bubbles were examined by a precordial pulsed Doppler. Bubble count was significantly lower for post-dive NOB than for control dives. HOB dramatically suppressed circulating bubble formation with a bubble count significantly lower than for NOB or controls. In-water recompression with oxygen to 6 msw is more effective in removing gas bubbles than NOB. This treatment could be used in situations of "interrupted" or "omitted" decompression, where a diver returns to the water in order to complete decompression prior to the onset of symptoms. Further investigations are needed before to recommend this protocol as an emergency treatment for DCS.

0 Bookmarks
 · 
95 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We highlighted a relationship between decompression-induced bubble formation and platelet micro-particle (PMP) release after a scuba air-dive. It is known that decompression protocol using oxygen-stop accelerates the washout of nitrogen loaded in tissues. The aim was to study the effect of oxygen deco-stop on bubble formation and cell-derived MP release. Healthy experienced divers performed two scuba-air dives to 30 msw for 30 min, one with an air deco-stop and a second with 100 % oxygen deco-stop at 3 msw for 9 min. Bubble grades were monitored with ultrasound and converted to the Kisman integrated severity score (KISS). Blood samples for cell-derived micro-particle analysis (AnnexinV for PMP and CD31 for endothelial MP) were taken 1 h before and after each dive. Mean KISS bubble score was significantly lower after the dive with oxygen-decompression stop, compared to the dive with air-decompression stop (4.3 ± 7.3 vs. 32.7 ± 19.9, p < 0.001). After the dive with an air-breathing decompression stop, we observed an increase of the post-dive mean values of PMP (753 ± 245 vs. 381 ± 191 ng/μl, p = 0.003) but no significant change in the oxygen-stop decompression dive (329 ± 215 vs. 381 +/191 ng/μl, p = 0.2). For the post-dive mean values of endothelial MP, there was no significant difference between both the dives. The Oxygen breathing during decompression has a beneficial effect on bubble formation accelerating the washout of nitrogen loaded in tissues. Secondary oxygen-decompression stop could reduce bubble-induced platelet activation and the pro-coagulant activity of PMP release preventing the thrombotic event in the pathogenesis of decompression sickness.
    Arbeitsphysiologie 02/2014; · 2.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Preventive measures to reduce the risk of decompression sickness can involve several procedures such as oxygen breathing during in-water decompression. Theoretical predictions also suggest that brief periods of recompression during the course of decompression could be a method for controlling bubble formation. The aim of this study was to get clearer information about the effects of different experimental ascent profiles (EAPs) on bubble reduction, using pure oxygen or recompression during decompression for nitrox diving. Four EAPs were evaluated using bubble monitoring in a group of six military divers using Nitrox 40% O(2) breathing with a rebreather. For EAP 1 and 2, 100% O(2) was used for the end stage of decompression, with a 30% reduction of decompression time in EAP 1 and 50% in EAP 2, compared to the French navy standard schedule. For EAP 3 and 4, nitrox 40% O(2) was maintained throughout the decompression stage. EAP 3 is based on an air standard decompression schedule, whereas EAP 4 involved a brief period of recompression at the end of the stop. We found that EAP 1 significantly reduced bubble formation, whereas high bubble grades occurred with other EAPs. No statistical differences were observed in bubbles scores between EAP 3 and 4. One diver developed mild neurological symptoms after EAP 3. These results tend to demonstrate that the "oxygen window" plays a key role in the reduction of bubble production and that breathing pure oxygen during decompression stops is an optimal strategy to prevent decompression sickness for nitrox diving.
    Arbeitsphysiologie 10/2011; 112(6):2257-65. · 2.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Cold-water diving requires good thermal insulation because hypothermia is a serious risk. Water conducts heat more efficiently compared to air. To stay warm during a dive, the choice of thermal protection should be based on physical activity, the temperature of the water, and the duration of exposure. A dry suit, a diving suit filled with gas, is the most common diving suit in cold water. Air is the traditional dry suit inflation gas, whereas the thermal conductivity of argon is approximately 32% lower compared to that of air. This study evaluates the benefits of argon, compared to air, as a thermal insulation gas for a dry suit during a 1-h cold-water dive by divers of the Royal Netherlands Navy. Methods Seven male Special Forces divers made (in total) 19 dives in a diving basin with water at 13°C at a depth of 3 m for 1 h in upright position. A rubber dry suit and woollen undergarment were used with either argon (n = 13) or air (n = 6) (blinded to the divers) as suit inflation gas. Core temperature was measured with a radio pill during the dive. Before, halfway, and after the dive, subjective thermal comfort was recorded using a thermal comfort score. Results No diver had to abort the test due to cold. No differences in core temperature and thermal comfort score were found between the two groups. Core temperature remained unchanged during the dives. Thermal comfort score showed a significant decrease in both groups after a 60-min dive compared to baseline. Conclusions In these tests the combination of the dry suit and undergarment was sufficient to maintain core temperature and thermal comfort for a dive of 1 h in water at 13°C. The use of argon as a suit inflation gas had no added value for thermal insulation compared to air for these dives.
    Extreme Physiology & Medicine. 01/2013; 2(1).

Full-text (2 Sources)

View
33 Downloads
Available from
May 21, 2014