Impact of combination antiretroviral therapy on cerebrospinal fluid HIV RNA and neurocognitive performance.

Department of Neurology, University of Washington School of Medicine, Seattle, USA.
AIDS (London, England) (Impact Factor: 6.56). 06/2009; 23(11):1359-66. DOI: 10.1097/QAD.0b013e32832c4152
Source: PubMed

ABSTRACT To determine whether antiretroviral regimens with good central nervous system (CNS) penetration control HIV in cerebrospinal fluid (CSF) and improve cognition.
Multisite longitudinal observational study.
Research clinics.
One hundred and one individuals with advanced HIV beginning or changing a new potent antiretroviral regimen were enrolled in the study. Data for 79 participants were analyzed. Participants underwent structured history and neurological examination, venipuncture, lumbar puncture, and neuropsychological tests at entry, 24, and 52 weeks.
Antiretroviral regimens were categorized as CNS penetration effectiveness (CPE) rank of at least 2 or less than 2. Generalized estimating equations were used to examine associations over the course of the study.
Concentration of HIV RNA in CSF and blood and neuropsychological test scores (NPZ4 and NPZ8).
Odds of suppression of CSF HIV RNA were higher when CPE rank was at least 2 than when it was less than 2. Odds of suppression of plasma HIV RNA were not associated with CPE rank. Among participants with impaired neuropsychological performance at entry, those prescribed regimens with a CPE rank of at least 2 or more antiretrovirals had lower composite NPZ4 scores over the course of the study.
Antiretroviral regimens with good CNS penetration, as assessed by CPE rank, are more effective in controlling CSF (and presumably CNS) viral replication than regimens with poorer penetration. In this study, antiretrovirals with good CNS penetration were associated with poorer neurocognitive performance. A larger controlled trial is required before any conclusions regarding the influence of specific antiretrovirals on neurocognitive performance should be made.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Marked improvements in survival and health outcome for people infected with HIV have occurred since the advent of combination antiretroviral therapy over a decade ago. Yet HIV-associated neurocognitive disorders continue to occur with an alarming prevalence. This may reflect the fact that infected people are now living longer with chronic infection. There is mounting evidence that HIV exacerbates age-associated cognitive decline. Many middle-aged HIV-infected people are experiencing cognitive decline similar that to that found among much older adults. An increased prevalence of vascular and metabolic comorbidities has also been observed and is greatest among older adults with HIV. Premature age-associated neurocognitive decline appears to be related to structural and functional brain changes on neuroimaging, and of particular concern is the fact that pathology indicative of neurodegenerative disease has been shown to occur in the brains of HIV-infected people. Yet notable differences also exist between the clinical presentation and brain disturbances occurring with HIV and those occurring in neurodegenerative conditions such as Alzheimer's disease. HIV interacts with the aging brain to affect neurological structure and function. However, whether this interaction directly affects neurodegenerative processes, accelerates normal cognitive aging, or contributes to a worsening of other comorbidities that affect the brain in older adults remains an open question. Evidence for and against each of these possibilities is reviewed.
    Alzheimer's Research and Therapy 01/2015; 7(1):37. DOI:10.1186/s13195-015-0123-4 · 3.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Azidothymidine (AZT) is a synthetic, chain-terminating nucleoside analog used to treat HIV-1 infection. While AZT is not actively transported across the blood brain barrier, it does accumulate at high levels in cerebrospinal fluid, and subsequently diffuses into the overlying parenchyma. Due to the close anatomical proximity of the neurogenic niches to the ventricular system, we hypothesize that diffusion from CSF exposes neural stem/progenitor cells and their progeny to biologically relevant levels of AZT sufficient to perturb normal cell functions. We employed in vitro and in vivo models of mouse neurogenesis in order to assess the effects of AZT on developing and adult neurogenesis. Using in vitro assays we show that AZT reduces the population expansion potential of neural stem/progenitor cells by inducing senescence. Additionally, in a model of in vitro neurogenesis AZT severely attenuates neuroblast production. These effects are mirrored in vivo by clinically-relevant animal models. We show that in utero AZT exposure perturbs both population expansion and neurogenesis among neural stem/progenitor cells. Additionally, a short-term AZT regimen in adult mice suppresses subependymal zone neurogenesis. These data reveal novel negative effects of AZT on neural stem cell biology. Given that the sequelae of HIV infection often include neurologic deficits-subsumed under AIDS Dementia Complex (Brew, 1999)-it is important to determine to what extent AZT negatively affects neurological function in ways that contribute to, or exacerbate, ADC in order to avoid attributing iatrogenic drug effects to the underlying disease process, and thereby skewing the risk/benefit analysis of AZT therapy.
    Frontiers in Neuroscience 03/2015; 9:93. DOI:10.3389/fnins.2015.00093
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To determine the effect of virally suppressive antiretroviral therapy (ART) on cortical neurodegeneration and associated neurocognitive impairment. Retrospective, postmortem observational study. Clinical neuropsychological and postmortem neuropathology data were analyzed in 90 HIV-infected volunteers from the general community who had never undergone ART (n = 7, 'naive') or who had undergone ART and whose plasma viral load was detectable (n = 64 'unsuppressed') or undetectable (n = 19, 'suppressed') at the last clinical visit before death. Individuals were predominately men (74/90, 82%) with a mean age of 44.7 years (SD 9.8). Cortical neurodegeneration was quantified by measuring microtubule-associated protein (MAP2) and synaptophysin (SYP) density in midfrontal cortex tissue sections. The suppressed group had higher SYP density than the naive group (P = 0.007) and higher MAP2 density than the unsuppressed group (P = 0.04). The suppressed group had lower odds of HIV-associated neurocognitive disorders than naive [odds ratio (OR) 0.07, P = 0.03]. Higher SYP was associated with lower likelihood of HIV-associated neurocognitive disorders in univariable (OR 0.8, P = 0.03) and multivariable models after controlling for ART and brain HIV p24 protein levels (OR 0.72, P = 0.01). We conclude that virally suppressive ART protects against cortical neurodegeneration. Further, we find evidence supporting the causal chain from treatment-mediated peripheral and central nervous system viral load suppression to reduced neurodegeneration and improved neurocognitive outcomes.
    AIDS (London, England) 01/2015; 29(3):323-30. DOI:10.1097/QAD.0000000000000553 · 6.56 Impact Factor

Full-text (2 Sources)

Available from
Jun 4, 2014