Article

The Role of miR-206 in the Epidermal Growth Factor (EGF) Induced Repression of Estrogen Receptor-α (ERα) Signaling and a Luminal Phenotype in MCF-7 Breast Cancer Cells

Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3505, USA.
Molecular Endocrinology (Impact Factor: 4.2). 06/2009; 23(8):1215-30. DOI: 10.1210/me.2009-0062
Source: PubMed

ABSTRACT Epidermal growth factor (EGF) receptor (EGFR)/MAPK signaling can induce a switch in MCF-7 breast cancer cells, from an estrogen receptor (ER)alpha-positive, Luminal-A phenotype, to an ERalpha-negative, Basal-like phenotype. Although mechanisms for this switch remain obscure, Basal-like cancers are typically high grade and confer a poorer clinical prognosis. We previously reported that miR-206 and ERalpha repress each other's expression in MCF-7 cells in a double-negative feedback loop. We show herein that miR-206 coordinately targets mRNAs encoding the coactivator proteins steroid receptor coactivator (SRC)-1 and SRC-3, and the transcription factor GATA-3, all of which contribute to estrogenic signaling and a Luminal-A phenotype. Overexpression of miR-206 repressed estrogen-mediated responses in MCF-7 cells, even in the presence of ERalpha encoded by an mRNA lacking a 3'-untranslated region, suggesting miR-206 affects estrogen signaling by targeting mRNAs encoding ERalpha-associated coregulatory proteins. Furthermore, EGF treatments enhanced miR-206 levels in MCF-7 cells and ERalpha-negative, EGFR-positive MDA-MB-231 cells, whereas EGFR small interfering RNA, or PD153035, an EGFR inhibitor, or U0126, a MAPK kinase inhibitor, significantly reduced miR-206 levels in MDA-MB-231 cells. Blocking EGF-induced enhancement of miR-206 with antagomiR-206 abrogated the EGF-inhibitory effect on ERalpha, SRC-1, and SRC-3 levels, and on estrogen response element-luciferase activity, indicating that EGFR signaling represses estrogenic responses in MCF-7 cells by enhancing miR-206 activity. Elevated miR-206 levels in MCF-7 cells ultimately resulted in reduced cell proliferation, enhanced apoptosis, and reduced expression of multiple estrogen-responsive genes. In conclusion, miR-206 contributes to EGFR-mediated abrogation of estrogenic responses in MCF-7 cells, contributes to a Luminal-A- to Basal-like phenotypic switch, and may be a measure of EGFR response within Basal-like breast tumors.

Download full-text

Full-text

Available from: Brian D Adams, Jun 18, 2014
0 Followers
 · 
157 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dysregulated miRNA expression has been associated with the development and progression of cancers, including breast cancer. The role of estrogen (E2) in regulation of cell proliferation and breast carcinogenesis is well-known. Recent reports have associated several miRNAs with estrogen receptors in breast cancers. Investigation of the regulatory role of miRNAs is critical for understanding the effect of E2 in human breast cancer, as well as for developing strategies for cancer chemoprevention. In the present study we used the well-established ACI rat model that develops mammary tumors upon E2 exposure and identified a 'signature' of 33 significantly modulated miRNAs during the process of mammary tumorigenesis. Several of these miRNAs were altered as early as 3 weeks after initial E2 treatment and their modulation persisted throughout the mammary carcinogenesis process, suggesting that these molecular changes are early events. Furthermore, ellagic acid, which inhibited E2-induced mammary tumorigenesis in our previous study, reversed the dysregulation of miR-375, miR-206, miR-182, miR-122, miR-127 and miR-183 detected with E2 treatment and modulated their target proteins (ERα, cyclin D1, RASD1, FoxO3a, FoxO1, cyclin G1, Bcl-w and Bcl-2). This is the first systematic study examining the changes in miRNA expression associated with E2 treatment in ACI rats as early as 3 week until tumor time point. The effect of a chemopreventive agent, ellagic acid in reversing miRNAs modulated during E2-mediated mammary tumorigenesis was also established. These observations provide mechanistic insights into the new molecular events behind the chemoprevention action of ellagic acid in and treatment of breast cancer.
    Cancer letters 06/2013; DOI:10.1016/j.canlet.2013.06.012 · 5.02 Impact Factor
  • Source
    Breast Cancer - Carcinogenesis, Cell Growth and Signalling Pathways, 11/2011; , ISBN: 978-953-307-714-7
  • [Show abstract] [Hide abstract]
    ABSTRACT: The involvement of miR-491-5p in breast cancer development is unclear. This study showed that miR-491-5p is significantly downregulated in ERα-positive breast cancer tissues and cell lines and is generally hypermethylated in ERα-positive breast cancer. MiR-491-5p overexpression significantly suppressed estrogen signaling and estrogen-stimulated proliferation of breast cancer cells. Furthermore, the histone demethylase JMJD2B was identified as a direct target of miR-491-5p. The ectopic expression of JMJD2B abrogated the phenotypic changes induced by miR-491-5p in breast cancer cells. Collectively, our data indicate that miR-491-5p plays a tumor suppressor role in the development and progression of breast caner and may be a novel therapeutic target against ERα-positive breast cancer. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
    FEBS Letters 02/2015; 589(7). DOI:10.1016/j.febslet.2015.02.014 · 3.34 Impact Factor